2025届湖南省长沙市周南梅溪湖中学高一下数学期末复习检测模拟试题含解析_第1页
2025届湖南省长沙市周南梅溪湖中学高一下数学期末复习检测模拟试题含解析_第2页
2025届湖南省长沙市周南梅溪湖中学高一下数学期末复习检测模拟试题含解析_第3页
2025届湖南省长沙市周南梅溪湖中学高一下数学期末复习检测模拟试题含解析_第4页
2025届湖南省长沙市周南梅溪湖中学高一下数学期末复习检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湖南省长沙市周南梅溪湖中学高一下数学期末复习检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某高级中学共有学生3000人,其中高二年级有学生800人,高三年级有学生1200人,为了调查学生的课外阅读时长,现用分层抽样的方法从所有学生中抽取75人进行问卷调查,则高一年级被抽取的人数为()A.20 B.25 C.30 D.352.直线的斜率是()A. B. C. D.3.设集合,,则()A. B. C. D.4.已知函数,当时,取得最小值,则等于()A.9 B.7 C.5 D.35.函数的部分图象如图,则()()A.0 B. C. D.66.若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A.0.3 B.0.4 C.0.6 D.0.77.下列函数中最小正周期为的是()A. B. C. D.8.设函数,若关于的方程恰有个不同的实数解,则实数的取值范围为()A. B. C. D.9.在等比数列中,,,则的值为()A.3或-3 B.3 C.-3 D.不存在10.已知圆锥的母线长为6,母线与轴的夹角为30°,则此圆锥的体积为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图为函数(,,,)的部分图像,则函数解析式为________12.已知等差数列则.13.已知正四棱锥的底面边长为,高为,则该四棱锥的侧面积是______________14.已知三棱柱的侧棱与底面边长都相等,在底面内的射影为的中心,则与底面所成角的正弦值等于.15.已知直线是函数(其中)图象的一条对称轴,则的值为________.16.设当时,函数取得最大值,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某校研究性学习小组从汽车市场上随机抽取辆纯电动汽车调查其续驶里程(单次充电后能行驶的最大里程),被调查汽车的续驶里程全部介于公里和公里之间,将统计结果分成组:,,,,,绘制成如图所示的频率分布直方图.(1)求直方图中的值;(2)求辆纯电动汽车续驶里程的中位数;(3)若从续驶里程在的车辆中随机抽取辆车,求其中恰有一辆车的续驶里程为的概率.18.已知函数.(I)比较,的大小.(II)求函数的最大值.19.关于的不等式的解集为.(1)求实数的值;(2)若,求的值.20.四棱锥S-ABCD中,底面ABCD为平行四边形,侧面底面ABCD,已知,为正三角形.(1)证明.(2)若,,求二面角的大小的余弦值.21.某校从高一(1)班和(2)班的某次数学考试的成绩中各随机抽取了6份数学成绩组成一个样本,如茎叶图所示(试卷满分为100分)(1)试计算这12份成绩的中位数;(2)用各班的样本方差比较两个班的数学学习水平,哪个班更稳定一些?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

通过计算三个年级的人数比例,于是可得答案.【详解】抽取比例为753000=140,高一年级有【点睛】本题主要考查分层抽样的相关计算,难度很小.2、A【解析】

一般式直线方程的斜率为.【详解】直线的斜率为.故选A【点睛】此题考察一般直线方程的斜率,属于较易基础题目3、D【解析】试题分析:集合,集合,所以,故选D.考点:1、一元二次不等式;2、集合的运算.4、B【解析】

先对函数进行配凑,使得能够使用均值不等式,再利用均值不等式,求得结果.【详解】因为故当且仅当,即时,取得最小值.故,则.故选:B.【点睛】本题考查均值不等式的使用,属基础题;需要注意均值不等式使用的条件.5、D【解析】

先利用正切函数求出A,B两点的坐标,进而求出与的坐标,再代入平面向量数量积的运算公式即可求解.【详解】因为y=tan(x)=0⇒xkπ⇒x=4k+2,由图得x=2;故A(2,0)由y=tan(x)=1⇒xk⇒x=4k+3,由图得x=3,故B(3,1)所以(5,1),(1,1).∴()5×1+1×1=1.故选D.【点睛】本题主要考查平面向量数量积的坐标运算,考查了利用正切函数值求角的运算,解决本题的关键在于求出A,B两点的坐标,属于基础题.6、B【解析】

分析:由公式计算可得详解:设事件A为只用现金支付,事件B为只用非现金支付,则因为所以,故选B.点睛:本题主要考查事件的基本关系和概率的计算,属于基础题.7、C【解析】

对A选项,对赋值,即可判断其最小正周期不是;利用三角函数的周期公式即可判断B、D的最小正周期不是,问题得解.【详解】对A选项,令,则,不满足,所以不是以为周期的函数,其最小正周期不为;对B选项,的最小正周期为:;对D选项,的最小正周期为:;排除A、B、D故选C【点睛】本题主要考查了三角函数的周期公式及周期函数的定义,还考查了赋值法,属于基础题.8、B【解析】

由已知中函数,若关于的方程恰有个不同的实数解,可以根据函数的图象分析出实数的取值范围.【详解】函数的图象如下图所示:关于的方程恰有个不同的实数解,令t=f(x),可得t2﹣at+2=0,(*)则方程(*)的两个解在(1,2],可得,解得,故选:B.【点睛】本题考查的知识点是根的存在性及根的个数判断,其中根据已知中函数的解析式,画出函数的图象,再利用数形结合是解答本题的关键.9、C【解析】

解析过程略10、B【解析】

根据母线长和母线与轴的夹角求得底面半径和圆锥的高,代入体积公式求得结果.【详解】由题意可知,底面半径;圆锥的高圆锥体积本题正确选项:【点睛】本题考查锥体体积的求解问题,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由函数的部分图像,先求得,得到,再由,得到,结合,求得,即可得到函数的解析式.【详解】由题意,根据函数的部分图像,可得,所以,又由,即,又由,即,解得,即,又因为,所以,所以.故答案为:.【点睛】本题主要考查了利用三角函数的图象求解函数的解析式,其中解答中熟记三角函数的图象与性质,准确计算是解答的关键,着重考查了数形结合思想,以及推理与计算能力,属于基础题.12、1【解析】试题分析:根据公式,,将代入,计算得n=1.考点:等差数列的通项公式.13、【解析】四棱锥的侧面积是14、【解析】试题分析:由题意得,不妨设棱长为,如图,在底面内的射影为的中心,故,由勾股定理得,过作平面,则为与底面所成角,且,作于中点,所以,所以,所以与底面所成角的正弦值为.考点:直线与平面所成的角.15、【解析】

根据正弦函数图象的对称性可得,由此可得答案.【详解】依题意得,所以,即,因为,所以或,故答案为:【点睛】本题考查了正弦函数图象的对称轴,属于基础题.16、;【解析】f(x)=sinx-2cosx==sin(x-φ),其中sinφ=,cosφ=,当x-φ=2kπ+(k∈Z)时,函数f(x)取得最大值,即θ=2kπ++φ时,函数f(x)取到最大值,所以cosθ=-sinφ=-.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)【解析】

(1)利用小矩形的面积和为,求得值,即可求得答案;(2)中位数的计算方法为:把频率分布直方图分成两个面积相等部分的平行于轴的直线横坐标,即可求得答案;(3)据直方图求出续驶里程在和续驶里程在的车辆数,利用排列组合和概率公式求出其中恰有一辆车的续驶里程在的概率,即可求得答案.【详解】(1)由直方图可得:(2)根据中位数的计算方法为:把频率分布直方图分成两个面积相等部分的平行于轴的直线横坐标.直方图可得:可得:辆纯电动汽车续驶里程的中位数.(3)续驶里程在的车辆数为:续驶里程在第五组的车辆数为.从辆车中随机抽取辆车,共有中抽法,其中恰有一辆车的续驶里程在的抽法有种,其中恰有一辆车的续驶里程在的概率为.【点睛】本题考查根据条型统计图求数据的中位数和根据组合数求概率问题,解题关键是掌握条型统计图基础知识和概率的求法,考查了分析能力和计算能力,属于中档题.18、(I);(II)时,函数取得最大值【解析】试题分析:(1)将f(),f()求出大小后比较即可.(2)根据三角函数二倍角公式将f(x)化简,最终化得一个二次函数,根据二次函数的单调性,由此得到最大值.解:(I)因为所以因为,所以(II)因为令,,所以,因为对称轴,根据二次函数性质知,当时,函数取得最大值.19、(1);(2).【解析】

(1)由行列式的运算法则,得原不等式即,而不等式的解集为,采用比较系数法,即可得到实数的值;(2)把代入,求得,进一步得到,再由两角差的正切公式即可求解.【详解】(1)原不等式等价于,由题意得不等式的解集为,故是方程的两个根,代入解得,所以实数的值为.(2)由,得,即.,【点睛】本题考查了行列式的运算法则、由一元二次不等式的解集求参数值、二倍角的正切公式以及两角差的正切公式,需熟记公式,属于基础题.20、(1)证明见解析.(2)二面角的余弦值为.【解析】

(1)作于点,连接,根据面面垂直性质可得底面ABCD,由三角形全等性质可得,进而根据线面垂直判定定理证明平面,即可证明.(2)根据所给角度和线段关系,可证明以均为等边三角形,从而取中点,连接,即可由线段长结合余弦定理求得二面角的大小.【详解】(1)证明:作于点,连接,如下图所示:因为侧面底面ABCD,则底面ABCD,因为为正三角形,则,所以,即,又因为,所以,而,所以平面,所以.(2)由(1)可知,,,所以,又因为,所以,即为中点.由等腰三角形三线合一可知,在中,由等腰三角形三线合一可得,所以均为边长为2的等边三角形,取中点,连接,如下图所示:由题意可知,即为二面角的平面角,所以在中由余弦定理可得,即二面角的余弦值为.【点睛】本题考查了线面垂直的判定定理,面面垂直的性质应用,二面角夹角的去找法及由余弦定理求二面角夹角的余弦值,属于中档题.21、(1)80;(2)(1)班.【解析】

(1)从茎叶图可直接得到答案;(2)通过方差公式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论