云南省迪庆州香格里拉中学2025届数学高一下期末联考模拟试题含解析_第1页
云南省迪庆州香格里拉中学2025届数学高一下期末联考模拟试题含解析_第2页
云南省迪庆州香格里拉中学2025届数学高一下期末联考模拟试题含解析_第3页
云南省迪庆州香格里拉中学2025届数学高一下期末联考模拟试题含解析_第4页
云南省迪庆州香格里拉中学2025届数学高一下期末联考模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省迪庆州香格里拉中学2025届数学高一下期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,角的对边分别是,若,则角的大小为()A.或 B.或 C. D.2.已知数列共有项,满足,且对任意、,有仍是该数列的某一项,现给出下列个命题:(1);(2);(3)数列是等差数列;(4)集合中共有个元素.则其中真命题的个数是()A. B. C. D.3.已知,是两条不同的直线,,是两个不同的平面,给出下列四个结论:①,,,则;②若,,,则;③若,,,则;④若,,,则.其中正确结论的序号是A.①③ B.②③ C.①④ D.②④4.已知球面上有三点,如果,且球心到平面的距离为,则该球的体积为()A. B. C. D.5.在等差数列{an}中,若a1+A.8 B.16 C.20 D.286.设等比数列的公比为,其前项的积为,并且满足条件:;给出下列论:①;②;③值是中最大值;④使成立的最大自然数等于198.其中正确的结论是()A.①③ B.①④ C.②③ D.②④7.实数数列为等比数列,则()A.-2 B.2 C. D.8.从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是()A.至少有一个红球与都是红球B.至少有一个红球与都是白球C.恰有一个红球与恰有二个红球D.至少有一个红球与至少有一个白球9.若圆与圆相切,则实数()A.9 B.-11 C.-11或-9 D.9或-1110.如右图所示的直观图,其表示的平面图形是(A)正三角形(B)锐角三角形(C)钝角三角形(D)直角三角形二、填空题:本大题共6小题,每小题5分,共30分。11.在△ABC中,内角A、B、C所对的边分别为a、b、c,若,则_____.12.已知角的终边经过点,则______.13.计算:__________.14.若无穷等比数列的各项和等于,则的取值范围是_____.15.如图,已知扇形和,为的中点.若扇形的面积为1,则扇形的面积为______.16.已知等差数列,,,,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,,其中.(1)求的值;(2)求的值.18.的内角、、的对边分别为、、,且.(Ⅰ)求角;(Ⅱ)若,且边上的中线的长为,求边的值.19.如图,某住宅小区的平面图呈圆心角为的扇形,小区的两个出入口设置在点及点处,且小区里有一条平行于的小路.(1)已知某人从沿走到用了分钟,从沿走到用了分钟,若此人步行的速度为每分钟米,求该扇形的半径的长(精确到米)(2)若该扇形的半径为,已知某老人散步,从沿走到,再从沿走到,试确定的位置,使老人散步路线最长.20.设数列的前n项和为,已知.(Ⅰ)求通项;(Ⅱ)设,求数列的前n项和.21.在区间内随机取两个数,则关于的一元二次方程有实数根的概率为__________.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

通过给定条件直接利用正弦定理分析,注意讨论多解的情况.【详解】由正弦定理可得:,,∵,∴为锐角或钝角,∴或.故选B.【点睛】本题考查解三角形中正弦定理的应用,难度较易.出现多解时常借助“大边对大角,小边对小角”来进行取舍.2、D【解析】

对任意的、,有仍是该数列的某一项,可得出是该数列中的项,由于,可得,即,以此类推即可判断出结论.【详解】对任意、,有仍是该数列的某一项,,当时,则,必有,即,而或.若,则,而、、,舍去;若,此时,,同理可得.可得数列为:、、、、.综上可得:(1);(2);(3)数列是等差数列;(4)集合,该集合中共有个元素.因此,(1)(2)(3)(4)都正确.故选:D.【点睛】本题考查有关数列命题真假的判断,涉及数列的新定义,考查推理能力与分类讨论思想的应用,属于中等题.3、C【解析】

利用面面垂直的判定定理判断①;根据面面平行的判定定理判断②;利用线面垂直和线面平行的性质判断③;利用线面垂直和面面平行的性质判断④【详解】①,,或,又,则成立,故正确②若,,或和相交,并不一定平行于,故错误③若,,则或,若,则并不一定平行于,故错误④若,,,又,成立,故正确综上所述,正确的命题的序号是①④故选【点睛】本题主要考查了命题的真假判断和应用,解题的关键是理解线面,面面平行与垂直的判断定理和性质定理,属于基础题.4、B【解析】

的外接圆半径为球半径球的体积为,故选B.5、C【解析】

因为an则a1所以a5故选C.6、B【解析】

利用等比数列的性质及等比数列的通项公式判断①正确;利用等比数列的性质及不等式的性质判断②错误;利用等比数列的性质判断③错误;利用等比数列的性质判断④正确,,从而得出结论.【详解】解:由可得又即由,即,结合,所以,,即,,即,即①正确;又,所以,即,即②错误;因为,即值是中最大值,即③错误;由,即,即,又,即,即④正确,综上可得正确的结论是①④,故选:B.【点睛】本题考查了等比数列的性质及不等式的性质,重点考查了运算能力,属中档题.7、B【解析】

由等比数列的性质计算,注意项与项之间的关系即可.【详解】由题意,,又与同号,∴.故选B.【点睛】本题考查等比数列的性质,解题时要注意等比数列中奇数项同号,偶数项同号.8、C【解析】

从装有5个红球和3个白球的口袋内任取3个球,不同的取球情况共有以下几种:3个球全是红球;2个红球和1个白球;1个红球2个白球;3个全是白球.选项A中,事件“都是红球”是事件“至少有一个红球”的子事件;选项B中,事件“至少有一个红球”与事件“都是白球”是对立事件;选项D中,事件“至少有一个红球”与事件“至少有一个白球”的事件为“2个红球1个白球”与“1个红球2个白球”;选项C中,事件“恰有一个红球”与事件“恰有2个红球”互斥不对立,故选C.9、D【解析】

分别讨论两圆内切或外切,圆心距和半径之间的关系即可得出结果.【详解】圆的圆心坐标为,半径;圆的圆心坐标为,半径,讨论:当圆与圆外切时,,所以;当圆与圆内切时,,所以,综上,或.【点睛】本题主要考查圆与圆位置关系,由两圆相切求参数的值,属于基础题型.10、D【解析】略二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

先利用同角三角函数的商数关系可得,再结合正弦定理及余弦定理化简可得,然后求解即可.【详解】解:因为,则,所以,即,所以,则,即,即即,故答案为:.【点睛】本题考查了同角三角函数的商数关系,重点考查了正弦定理及余弦定理的应用,属中档题.12、【解析】由题意,则.13、0【解析】

直接利用数列极限的运算法则,分子分母同时除以,然后求解极限可得答案.【详解】解:,故答案为:0.【点睛】本题主要考查数列极限的运算法则,属于基础知识的考查.14、.【解析】

根据题意可知,,从而得出,再由,即可求出的取值范围.【详解】解:由题意可知,,且,,,,或,故的取值范围是,故答案为:.【点睛】本题主要考查等比数列的极限问题,解题时要熟练掌握无穷等比数列的极限和,属于基础题.15、1【解析】

设,在扇形中,利用扇形的面积公式可求,根据已知,在扇形中,利用扇形的面积公式即可计算得解.【详解】解:设,扇形的面积为1,即:,解得:,为的中点,,在扇形中,.故答案为:1.【点睛】本题主要考查了扇形的面积公式的应用,考查了数形结合思想和转化思想,属于基础题.16、【解析】

利用等差中项的基本性质求得,,并利用等差中项的性质求出的值,由此可得出的值.【详解】由等差中项的性质可得,同理,由于、、成等差数列,所以,则,因此,.故答案为:.【点睛】本题考查利用等差中项的性质求值,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)根据题意,由,求解,注意角的范围,可求得值,再根据运用两角和正切公式,即可求解;(2)由题意,配凑组合角,运用两角差余弦公式,即可求解.【详解】(1)∵,∴,∵,∴,∴,,(2)∵,∴,,∵,,∴,,∴.【点睛】本题考查三角恒等变换中的由弦求切、两角和正切公式、两角差余弦公式,考查配凑组合角,考查计算能力,属于基础题.18、(Ⅰ);(Ⅱ)4.【解析】

(Ⅰ)利用正弦定理和三角恒等变换的公式化简即得;(Ⅱ)设,则,,由余弦定理得关于x的方程,解方程即得解.【详解】(Ⅰ)由题意,∴,∴,则,∵,∴,∴;(Ⅱ)由(Ⅰ)知,又∵,∴,设,则,,在中,由余弦定理得:,即,解得,即.【点睛】本题主要考查正弦定理余弦定理解三角形,考查三角恒等变换,意在考查学生对这些知识的理解掌握水平和分析推理能力.19、(1)445米;(2)在弧的中点处【解析】

(1)假设该扇形的半径为米,在中,利用余弦定理求解;(2)设设,在中根据正弦定理,用和表示和,进而利用和差公式和辅助角公式化简,再根据三角函数的性质求最值.【详解】(1)方法一:设该扇形的半径为米,连接.由题意,得(米),(米),在中,即,解得(米)方法二:连接,作,交于,由题意,得(米),(米),,在中,.(米)..在直角中,(米),(米).(2)连接,设,在中,由正弦定理得:,于是,则,所以当时,最大为,此时在弧的中点处.【点睛】本题考查正弦定理,余弦定理的实际应用,结合了三角函数的化简与求三角函数的最值.20、(Ⅰ);(Ⅱ).【解析】试题分析:(Ⅰ)当时,根据,构造,利用,两式相减得到,然后验证,得到数列的通项公式;(Ⅱ)由上一问可知.根据零点分和讨论去绝对值,利用分组转化求数列的和.试题解析:(Ⅰ)因为,所以当时,,两式相减得:当时,,因为,得到,解得,,所以数列是首项,公比为5的等比数列,则;(Ⅱ)由题意知,,易知当时,;时,所以当时,,当时,,所以,,……当时,又因为不满足满足上式,所以.考点:1.已知求;2.分组转化法求和.【方法点睛】本题考查了数列求和,一般数列求和方法(1)分组转化法,一般适用于等差数列加等比数列,(2)裂项相消法求和,,等的形式,(3)错位相减法求和,一般适用于等差数列乘以等比数列,(4)倒序相加法求和,一般距首末两项的和是一个常数,这样可以正着写和和倒着写和,两式两式相加除以2得到数列求和,(5)或是具有某些规律求和,(6)本题考查了等差数列绝对值求和,需讨论零点后分两段求和.21

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论