专题05 特殊的平行四边形中的最值模型之胡不归模型(原卷版)_第1页
专题05 特殊的平行四边形中的最值模型之胡不归模型(原卷版)_第2页
专题05 特殊的平行四边形中的最值模型之胡不归模型(原卷版)_第3页
专题05 特殊的平行四边形中的最值模型之胡不归模型(原卷版)_第4页
专题05 特殊的平行四边形中的最值模型之胡不归模型(原卷版)_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题05.特殊的平行四边形中的最值模型之胡不归模型胡不归模型可看作将军饮马衍生,主要考查转化与化归等的数学思想,近年在中考数学和各地的模拟考中常以压轴题的形式考查,学生不易把握。本专题就最值模型中的胡不归问题进行梳理及对应试题分析,方便掌握。在解决胡不归问题主要依据是:点到线的距离垂线段最短。【模型背景】从前有个少年外出求学,某天不幸得知老父亲病危的消息,便立即赶路回家.根据“两点之间线段最短”,虽然从他此刻位置A到家B之间是一片砂石地,但他义无反顾踏上归途,当赶到家时,老人刚咽了气,小伙子追悔莫及失声痛哭.邻居告诉小伙子说,老人弥留之际不断念叨着“胡不归?胡不归?”看到这里很多人都会有一个疑问,少年究竟能不能提前到家呢?假设可以提早到家,那么他该选择怎样的一条路线呢?这就是今天要讲的“胡不归”问题.补充知识:在直角三角形中锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即。若无法理解正弦,也可考虑特殊直角三角形(含30°,45°,60°)的三边关系。【模型解读】一动点P在直线MN外的运动速度为V1,在直线MN上运动的速度为V2,且V1<V2,A、B为定点,点C在直线MN上,确定点C的位置使的值最小.(注意与阿氏圆模型的区分)1),记,即求BC+kAC的最小值.2)构造射线AD使得sin∠DAN=k,,CH=kAC,将问题转化为求BC+CH最小值.3)过B点作BH⊥AD交MN于点C,交AD于H点,此时BC+CH取到最小值,即BC+kAC最小.【解题关键】在求形如“PA+kPB”的式子的最值问题中,关键是构造与kPB相等的线段,将“PA+kPB”型问题转化为“PA+PC”型.(若k>1,则提取系数,转化为小于1的形式解决即可)。【最值原理】两点之间线段最短及垂线段最短。例1.(2023·四川乐山·统考二模)如图,菱形中,,,是对角线上的任意一点,则的最小值为(

).

A. B. C. D.例2.(2023·四川宜宾·校考模拟预测)如图,平行四边形ABCD中,∠DAB=60°,AB=6,BC=2,P为边CD上的一动点,则的最小值等于________.例3.(2023上·广东佛山·八年级校考阶段练习)如图,在长方形中,,,点在上,连接,在点的运动过程中,的最小值为.

例4.(2023·云南昆明·统考二模)如图,正方形边长为4,点E是边上一点,且.P是对角线上一动点,则的最小值为(

)A.4 B. C. D.例5.(2022·山东济宁·校考模拟预测)如图,矩形的对角线,相交于点,关于的对称图形为.(1)求证:四边形是菱形;(2)连接,若,.①求的值;②若点为线段上一动点(不与点重合),连接,一动点从点出发,以的速度沿线段匀速运动到点,再以的速度沿线段匀速运动到点,到达点后停止运动.当点沿上述路线运动到点所需要的时间最短时,求的长和点走完全程所需的时间.课后专项训练1.(2023·广东广州·校考三模)如图:等边三角形中,,E、F分别是边上的动点,且,则的最小值为(

A. B. C. D.2.(2023上·江苏徐州·九年级校联考阶段练习)如图,在矩形中,,对角线相交于点O,.若点P是边上一动点,求的最小值为.3.(2023上·湖北黄石·九年级校联考阶段练习)如图,在平面直角坐标系中,,将线段绕点进行旋转,,取中点,,连接,已知点的坐标为,那么将线段绕点的旋转过程中,的最小值为.

4.(2022·内蒙古鄂尔多斯·统考中考真题)如图,在△ABC中,AB=AC=4,∠CAB=30°,AD⊥BC,垂足为D,P为线段AD上的一动点,连接PB、PC.则PA+2PB的最小值为.5.(2023·广东东莞·校考三模)如图,菱形ABCD的边长为6,∠B=120°.点P是对角线AC上一点(不与端点A重合),则AP+PD的最小值为_____.6.如图,中,,,,为边上的一动点,则的最小值等于.7.(2023·湖南湘西·八年级统考阶段练习)如图,已知菱形ABCD的边长为4,点是对角线AC上的一动点,且∠ABC=120°,则的最小值是____________.8.(2023·重庆沙坪坝·八年级校考期末)如图,在直角坐标系中,直线:与轴交于点,与轴交于点,分别以、为边作矩形,点、在直线上,且,则的最小值是.9.(2023·湖南·九年级月考)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AB=6,△BCD为等边三角形点E为△BCD围成的区域(包括各边)的一点过点E作EM∥AB,交直线AC于点M作EN∥AC交直线AB于点N,则AN+AM的最大值为.10.(2022·四川眉山·统考一模)两张宽为3cm的纸条交叉重叠成四边形ABCD.如图所示若,P是对角线BD上的一个动点,则的最小值是______.11.(2023上·广东佛山·八年级校考阶段练习)如图,在长方形中,,,点在上,连接,在点的运动过程中,的最小值为.

12.(2023·湖北孝感·校考模拟预测)如图,四边形是正方形纸片,.对折正方形纸片,使与重合,折痕为;展平后再过点折叠正方形纸片,使点落在上的点处,折痕为;再次展平,延长交于点Q.有如下结论:①;②;③;④;⑤为线段上一动点,则的最小值是.其中正确结论的序号是.

13.(2023下·四川成都·八年级统考期末)【阅读理解】在平面直角坐标系中,已知点R,S为平面内不重合的两点.给出如下定义:将点R绕点S顺时针旋转90度得到点,点关于y轴的对称点为,则称点为点R关于点S的“旋对点”.【迁移应用】如图,在平面直角坐标系中,直线与x轴相交于点A,与y轴相交于点B.平面内有一点.

(1)请在图中画出点M关于点O的“旋对点”,并直接写出点M的坐标;(2)点Q为直线上一动点.①若点Q关于点M的“旋对点”为点,试探究直线经过某一定点,并求出该定点的坐标;②在①的条件下,设直线所经过的定点为H,取的中点N,连

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论