




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省范亭中学2025届数学高一下期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若{an}是等差数列,且a1+a4+a7=45,a2+a5+a8=39,则a3+a6+a9=()A.39 B.20 C.19.5 D.332.已知数列是首项为,公差为的等差数列,若,则()A. B. C. D.3.已知两条直线m,n,两个平面α,β,下列命题正确是()A.m∥n,m∥α⇒n∥α B.α∥β,m⊂α,n⊂β⇒m∥nC.α⊥β,m⊂α,n⊂β⇒m⊥n D.α∥β,m∥n,m⊥α⇒n⊥β4.设,为两个平面,则能断定∥的条件是()A.内有无数条直线与平行 B.,平行于同一条直线C.,垂直于同一条直线 D.,垂直于同一平面5.若直线x+(1+m)y-2=0与直线mx+2y+4=0平行,则m的值是()A.1 B.-2 C.1或-2 D.6.已知角的终边经过点,则=()A. B. C. D.7.我国古代著名的周髀算经中提到:凡八节二十四气,气损益九寸九分六分分之一;冬至晷长一丈三尺五寸,夏至晷长一尺六寸意思是:一年有二十四个节气,每相邻两个节气之间的日影长度差为分;且“冬至”时日影长度最大,为1350分;“夏至”时日影长度最小,为160分则“立春”时日影长度为A.分 B.分 C.分 D.分8.在三棱柱中,已知,,此三棱柱各个顶点都在一个球面上,则球的体积为().A. B. C. D.9.己知某三棱锥的三视图如图所示,其中正视图和侧视图都是边长为2的等边三角形,则该三棱锥的体积为()A. B. C. D.10.在长方体中,,,则异面直线与所成角的余弦值为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图所示,已知,用表示.12.下列关于函数与的命题中正确的结论是______.①它们互为反函数;②都是增函数;③都是周期函数;④都是奇函数.13.某县现有高中数学教师500人,统计这500人的学历情况,得到如下饼状图,该县今年计划招聘高中数学新教师,只招聘本科生和研究生,使得招聘后该县高中数学专科学历的教师比例下降到,且研究生的比例保持不变,则该县今年计划招聘的研究生人数为_______.14.若,点的坐标为,则点的坐标为.15.无穷等比数列的首项是某个正整数,公比为单位分数(即形如:的分数,为正整数),若该数列的各项和为3,则________.16.已知,,,则的最小值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数.(1)当时,解关于的不等式;(2)若关于的不等式的解集为,求的值.18.已知函数.(1)若,求函数的值;(2)求函数的值域.19.已知平面向量(1)若,求;(2)若,求与夹角的余弦值.20.如图,在三棱柱中,底面,,,,分别为的中点,为侧棱上的动点(Ⅰ)求证:平面平面;(Ⅱ)若为线段的中点,求证:平面;(Ⅲ)试判断直线与平面是否能够垂直.若能垂直,求的值;若不能垂直,请说明理由21.如图,已知圆:,点.(1)求经过点且与圆相切的直线的方程;(2)过点的直线与圆相交于、两点,为线段的中点,求线段长度的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
根据等差数列的通项公式,纵向观察三个式子的项的脚标关系,可巧解.【详解】由等差数列得:所以同理:故选D.【点睛】本题考查等差数列通项公式,关键纵向观察出脚标的特殊关系更妙,属于中档题.2、C【解析】
本题首先可根据首项为以及公差为求出数列的通项公式,然后根据以及数列的通项公式即可求出答案.【详解】因为数列为首项,公差的等差数列,所以,因为所以,,故选C.【点睛】本题考查如何判断实数为数列中的哪一项,主要考查等差数列的通项公式的求法,等差数列的通项公式为,考查计算能力,是简单题.3、D【解析】
在A中,n∥α或n⊂α;在B中,m与n平行或异面;在C中,m与n相交、平行或异面;在D中,由线面垂直的判定定理得:α∥β,m∥n,m⊥α⇒n⊥β.【详解】由两条直线m,n,两个平面α,β,知:在A中,m∥n,m∥α⇒n∥α或n⊂α,故A错误;在B中,α∥β,m⊂α,n⊂β⇒m与n平行或异面,故B错误;在C中,α⊥β,m⊂α,n⊂β⇒m与n相交、平行或异面,故C错误;在D中,由线面垂直的判定定理得:α∥β,m∥n,m⊥α⇒n⊥β,故D正确.故选:D.【点评】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.4、C【解析】
对四个选项逐个分析,可得出答案.【详解】对于选项A,当,相交于直线时,内有无数条直线与平行,即A错误;对于选项B,当,相交于直线时,存在直线满足:既与平行又不在两平面内,该直线平行于,,故B错误;对于选项C,设直线AB垂直于,平面,垂足分别为A,B,假设与不平行,设其中一个交点为C,则三角形ABC中,,显然不可能成立,即假设不成立,故与平行,故C正确;对于选项D,,垂直于同一平面,与可能平行也可能相交,故D错误.【点睛】本题考查了面面平行的判断,考查了学生的空间想象能力,属于中档题.5、A【解析】
分类讨论直线的斜率情况,然后根据两直线平行的充要条件求解即可得到所求.【详解】①当时,两直线分别为和,此时两直线相交,不合题意.②当时,两直线的斜率都存在,由直线平行可得,解得.综上可得.故选A.【点睛】本题考查两直线平行的等价条件,解题的关键是将问题转化为对直线斜率存在性的讨论.也可利用以下结论求解:若,则且或且.6、D【解析】试题分析:由题意可知x=-4,y=3,r=5,所以.故选D.考点:三角函数的概念.7、B【解析】
首先“冬至”时日影长度最大,为1350分,“夏至”时日影长度最小,为160分,即可求出,进而求出立春”时日影长度为.【详解】解:一年有二十四个节气,每相邻两个节气之间的日影长度差为分,且“冬至”时日影长度最大,为1350分;“夏至”时日影长度最小,为160分.,解得,“立春”时日影长度为:分.故选B.【点睛】本题考查等差数列的性质等基础知识,考查运算求解能力,利用等差数列的性质直接求解.8、A【解析】试题分析:直三棱柱的各项点都在同一个球面上,如图所示,所以中,,所以下底面的外心为的中点,同理,可得上底面的外心为的中点,连接,则与侧棱平行,所以平面,再取的中点,可得点到的距离相等,所以点是三棱柱的为接球的球心,因为直角中,,所以,即外接球的半径,因此三棱柱外接球的体积为,故选A.考点:组合体的结构特征;球的体积公式.【方法点晴】本题主要考查了球的组合体的结构特征、球的体积的计算,其中解答中涉及到三棱柱的线面位置关系、直三棱柱的结构特征、球的性质和球的体积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和学生的空间想象能力,试题有一定的难度,属于中档试题.9、B【解析】
先找到三视图对应的几何体原图,再求几何体的体积.【详解】由题得三视图对应的几何体原图是如图所示的三棱锥A-BCD,所以几何体的体积为.故选B【点睛】本题主要考查三视图找到几何体原图,考查三棱锥体积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.10、C【解析】
画出长方体,将平移至,则,则即为异面直线与所成角,由余弦定理即可求解.【详解】根据题意,画出长方体如下图所示:将平移至,则即为异面直线与所成角,,由余弦定理可得故选:C【点睛】本题考查了长方体中异面直线的夹角求法,余弦定理在解三角形中的应用,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
可采用向量加法和减法公式的线性运算进行求解【详解】由,整理得【点睛】本题考查向量的线性运算,解题关键在于将所有向量通过向量的加法和减法公式转化成基底向量,属于中档题12、④【解析】
利用反函数,增减性,周期函数,奇偶性判断即可【详解】①,当时,的反函数是,故错误;②,当时,是增函数,故错误;③,不是周期函数,故错误;④,与都是奇函数,故正确故答案为④【点睛】本题考查正弦函数及其反函数的性质,熟记其基本性质是关键,是基础题13、50【解析】
先计算出招聘后高中数学教师总人数,然后利用比例保持不变,得到该县今年计划招聘的研究生人数.【详解】招聘后该县高中数学专科学历的教师比例下降到,则招聘后,该县高中数学教师总人数为,招聘后研究生的比例保持不变,该县今年计划招聘的研究生人数为.【点睛】本题主要考查学生的阅读理解能力和分析能力,从题目中提炼关键字眼“比例保持不变”是解题的关键.14、【解析】试题分析:设,则有,所以,解得,所以.考点:平面向量的坐标运算.15、【解析】
利用无穷等比数列的各项和,可求得,从而,利用首项是某个自然数,可求,进而可求出.【详解】无穷等比数列各项和为3,,是个自然数,则,.故答案为:【点睛】本题主要考查了等比数列的前项和公式,需熟记公式,属于基础题.16、8【解析】由题意可得:则的最小值为.当且仅当时等号成立.点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)不等式为,根据一元二次不等式的解法直接求得结果;(2)根据一元二次不等式与一元二次方程的关系可知的两根为:和,且,利用韦达定理构造方程可求得结果.【详解】(1)当时,由得:,解得:或不等式的解集为:(2)由不等式得:解集为方程的两根为:和,且,即,解得:【点睛】本题考查一元二次不等式的求解、一元二次不等式解集和一元二次方程根的关系;关键是能够根据不等式解集得到方程的根,利用韦达定理求得结果.18、(1);(2).【解析】
(1),.(2)由(1),,∴函数的值域为[1,2].19、(1)(2)【解析】
(1)由题可得,解出,,进而得出答案.(2)由题可得,,再由计算得出答案,【详解】因为,所以,即解得所以(2)若,则所以,,,所以【点睛】本题主要考查的向量的模以及数量积,属于简单题.20、(Ⅰ)见解析(Ⅱ)见解析(Ⅲ)直线BC1与平面APM不能垂直,详见解析【解析】
(Ⅰ)由等腰三角形三线合一得;由线面垂直性质可得;根据线面垂直的判定定理知平面;由面面垂直判定定理证得结论;(Ⅱ)取中点,可证得,;利用线面平行判定定理和面面平行判定定理可证得平面平面;根据面面平行性质可证得结论;(Ⅲ)假设平面,由线面垂直性质可知,利用相似三角形得到,从而解得长度,可知满足垂直关系时,不在棱上,则假设错误,可得到结论.【详解】(Ⅰ),为中点平面,平面又平面平面,平面又平面平面平面(Ⅱ)取中点,连接分别为的中点且四边形为平行四边形又平面,平面平面分别为的中点又分别为的中点又平面,平面平面平面,平面平面又平面平面(Ⅲ)假设平面,由平面得:设,当时,∽由已知得:,,,解得:假设错误直线与平面不能垂直【点睛】本题考查立体几何中面面垂直、线面平行关系的证明、存在性问题的求解;涉及到线面垂直的判定与性质、线面平行的判定、面面平行的判定与性质定理的应用;处理存在性问题时,常采用假设法,通过假设成立构造方程,判断是否满足已知要求,从而得到结论.21、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 提高自我保护意识的安全教育计划
- 串串店店面转让合同样本
- 农资聘用合同标准文本
- 2025年的建筑工程承包合同
- 主管的职业发展路径规划计划
- 债权继承合同样本
- 2025广州企业员工标准劳动合同范本
- 入驻经营合同标准文本
- 班级工作计划完善技巧
- 农村安装果园合同样本
- 沪教版(五四学制)(2024)六年级下册单词表+默写单
- 计量经济学期末考试题库(完整版)及答案
- 安保工作“智能化、网格化”管理模式的建立及持续改进工作
- 履带底盘的组成介绍及各参数的计算
- 资产评估收费管理办法中评协[2009]199号
- 贾平凹《秦腔》
- 联轴器找中心PPT课件
- 加 工 贸 易 手 册
- CDP指标介绍及应用
- 浙江省建设工程施工取费定额(2003版)完整版
- 机动车查验工作规程GA801-2019
评论
0/150
提交评论