上海市浦东新区建平中学2025届数学高一下期末联考模拟试题含解析_第1页
上海市浦东新区建平中学2025届数学高一下期末联考模拟试题含解析_第2页
上海市浦东新区建平中学2025届数学高一下期末联考模拟试题含解析_第3页
上海市浦东新区建平中学2025届数学高一下期末联考模拟试题含解析_第4页
上海市浦东新区建平中学2025届数学高一下期末联考模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市浦东新区建平中学2025届数学高一下期末联考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知实数x,y满足约束条件y≤1x≤2x+2y-2≥0,则A.1 B.2 C.3 D.42.已知向量,则向量的夹角为()A. B. C. D.3.某程序框图如图所示,若输出的,则判断框内应填()A. B. C. D.4.如图是函数的部分图象2,则该解析式为()A. B.C. D.5.若,,则的终边所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限6.下列函数中,图象的一部分如图所示的是()A. B.C. D.7.在平行四边形ABCD中,,,E是CD的中点,则()A.2 B.-3 C.4 D.68.直线l:x+y﹣1=0与圆C:x2+y2=1交于两点A、B,则弦AB的长度为()A.2 B. C.1 D.9.在等比数列中,若,则()A.3 B. C.9 D.1310.在棱长为2的正方体中,是内(不含边界)的一个动点,若,则线段的长的取值范围为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.执行如图所示的程序框图,则输出的结果为__________.12.点与点关于直线对称,则直线的方程为______.13.已知为数列{an}的前n项和,且,,则{an}的首项的所有可能值为______14.在正方体中,是棱的中点,则异面直线与所成角的余弦值为__________.15.已知在中,角A,B,C的对边分别为a,b,c,,,的面积等于,则外接圆的面积为______.16.若则的最小值是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱锥中,底面是菱形,底面.(Ⅰ)证明:;(Ⅱ)若,求二面角的余弦值.18.在中,内角所对的边分别为,已知,且.(1)求;(2)若,求的值.19.已知向量.(1)求的值;(2)若,且,求.20.如图,在直三棱柱中,,为的中点,为的中点.(1)求证:平面;(2)求证:.21.某机构通过对某企业今年的生产经营情况的调查,得到每月利润(单位:万元)与相应月份数的部分数据如表:14712229244241196(1)根据如表数据,请从下列三个函数中选取一个恰当的函数描述与的变化关系,并说明理由,,,;(2)利用(1)中选择的函数,估计月利润最大的是第几个月,并求出该月的利润.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

作出可行域,作直线l:x+y=0,平移直线l可得最优解.【详解】作出可行域,如图ΔABC内部(含边界),作直线l:x+y=0,平移直线l,当直线l过点C(2,1)时,x+y=2+1=3为最大值.故选C.【点睛】本题考查简单的线性规划,解题关键是作出可行域.2、C【解析】试题分析:,设向量的夹角为,考点:向量夹角及向量的坐标运算点评:设夹角为,3、A【解析】

根据程序框图的结构及输出结果,逆向推断即可得判断框中的内容.【详解】由程序框图可知,,则所以此时输出的值,因而时退出循环.因而判断框的内容为故选:A【点睛】本题考查了根据程序框图的输出值,确定判断框的内容,属于基础题.4、D【解析】

根据函数图象依次求出振幅,周期,根据周期求出,将点代入解析式即可得解.【详解】根据图象可得:,最小正周期,,经过,,,,,所以,所以函数解析式为:.故选:D【点睛】此题考查根据函数图象求函数解析式,考查函数的图象和性质,尤其是对振幅周期的辨析,最后求解的值,一般根据最值点求解.5、B【解析】由一全正二正弦三正切四余弦可得的终边所在的象限为第二象限,故选B.考点:三角函数6、D【解析】

设图中对应三角函数最小正周期为T,从图象看出,T=,所以函数的最小正周期为π,函数应为y=向左平移了个单位,即=,选D.7、A【解析】

由平面向量的线性运算可得,再结合向量的数量积运算即可得解.【详解】解:由,,所以,,,则,故选:A.【点睛】本题考查了平面向量的线性运算,重点考查了向量的数量积运算,属中档题.8、B【解析】

利用直线和圆相交所得弦长公式,计算出弦长.【详解】圆的圆心为,半径为,圆心到直线的距离为,所以.故选:B【点睛】本小题主要考查直线和圆相交所得弦长的计算,属于基础题.9、A【解析】

根据等比数列性质即可得解.【详解】在等比数列中,,,所以,所以,.故选:A【点睛】此题考查等比数列的性质,根据性质求数列中的项的关系,关键在于熟练掌握相关性质,准确计算.10、C【解析】

先判断是正四面体,可得正四面体的棱长为,则的最大值为的长,的最小值是到平面的距离,结合不在三角形的边上,计算可得结果.【详解】由正方体的性质可知,是正四面体,且正四面体的棱长为,在内,的最大值为,的最小值是到平面的距离,设在平面的射影为,则为正三角形的中心,,,的最小值为,又因为不在三角形的边上,所以的范围是,故选C.【点睛】本题主要考查正方体的性质及立体几何求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义以及平面几何的有关结论来解决,非常巧妙;二是将立体几何中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法求解.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】

由已知中的程序语句可知:该程序的功能是利用循环结构计算S的值并输出变量i的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】模拟程序的运行,可得

S=1,i=1

满足条件S<40,执行循环体,S=3,i=2

满足条件S<40,执行循环体,S=7,i=3

满足条件S<40,执行循环体,S=15,i=4

满足条件S<40,执行循环体,S=31,i=5

满足条件S<40,执行循环体,S=13,i=1

此时,不满足条件S<40,退出循环,输出i的值为1.

故答案为:1.【点睛】本题主要考查的是程序框图,属于基础题.在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.12、【解析】

根据和关于直线对称可得直线和直线垂直且中点在直线上,从而可求得直线的斜率,利用点斜式可得直线方程.【详解】由,得:且中点坐标为和关于直线对称且在上的方程为:,即:本题正确结果:【点睛】本题考查根据两点关于直线对称求解直线方程的问题,关键是明确两点关于直线对称则连线与对称轴垂直,且中点必在对称轴上,属于常考题型.13、【解析】

根据题意,化简得,利用式相加,得到,进而得到,即可求解结果.【详解】因为,所以,所以,将以上各式相加,得,又,所以,解得或.【点睛】本题主要考查了数列的递推关系式应用,其中解答中利用数列的递推关系式,得到关于数列首项的方程求解是解答的关键,着重考查了推理与运算能力,属于中档试题.14、【解析】

假设正方体棱长,根据//,得到异面直线与所成角,计算,可得结果.【详解】假设正方体棱长为1,因为//,所以异面直线与所成角即与所成角则角为如图,所以故答案为:【点睛】本题考查异面直线所成的角,属基础题.15、4π【解析】

利用三角形面积公式求解,再利用余弦定理求得,进而得到外接圆半径,再求面积即可.【详解】由,解得..解得.,解得.∴△ABC外接圆的面积为4π.故答案为:4π.【点睛】本题主要考查了解三角形中正余弦与面积公式的运用,属于基础题型.16、【解析】

根据对数相等得到,利用基本不等式求解的最小值得到所求结果.【详解】则,即由题意知,则,则当且仅当,即时取等号本题正确结果:【点睛】本题考查基本不等式求解和的最小值问题,关键是能够利用对数相等得到的关系,从而构造出符合基本不等式的形式.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)见解析(Ⅱ)【解析】

(Ⅰ)由底面推出,由菱形的性质推出,即可推出平面从而得到;(Ⅱ)作,交的延长线于,连接,则二面角的平面角是,由已知条件求出AD,进而求出AE、PD,即可求得.【详解】(Ⅰ)证明:连接,∵底面,底面,∴.∵四边形是菱形,∴.又∵,平面,平面,∴平面,∴.(Ⅱ)作,交的延长线于,连接.由于,于是平面,平面,,所以二面角的平面角是.设“”,且底面是菱形,,,,∴.【点睛】本题考查线面垂直、线线垂直的证明,二面角的余弦值,属于中档题.18、(1);(2).【解析】

(1)根据诱导公式、正弦定理、同角三角函数基本关系式,结合已知等式,化简,结合,可得A的值;(2)由已知根据余弦定理可得,利用正弦定理可得联立即可解得λ的值.【详解】(1),,;(2),,而,,而,所以有.【点睛】本题考查了诱导公式、正弦定理、同角三角函数基本关系式、余弦定理,考查了数学运算能力.19、(1);(2).【解析】

(1)对等式进行平方运算,根据平面向量的模和数量积的坐标表示公式,结合两角差的余弦公式直接求解即可;(2)由(1)可以结合同角的三角函数关系式求出的值,再由同角三角函数关系式结合的值求出的值,最后利用两角和的正弦公式求出的值即可.【详解】(1);(2)因为,所以,而,所以,因为,,所以.因此有.【点睛】本题考查了已知平面向量的模求参数问题,考查了平面向量数量积的坐标表示公式,考查了两角差的余弦公式,考查了两角和的正弦公式,考查了同角的三角函数关系式的应用,考查了数学运算能力.20、(1)见解析(2)见解析【解析】

(1)连、相交于点,证明四边形为平行四边形,得到,证明平面(2)证明平面推出【详解】证明:(1)如图,连、相交于点,,,,,,,∴四边形为平行四边形,,平面,平面,平面,…(2)连因为三棱柱是直三棱柱,底面,平面,,,,,,平面,平面,.【点睛】本题考查了线面平行,线线垂直,线面垂直,意在考查学生的空间想象能力.2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论