![2023-2024学年广东省江门市江海区六校中考数学对点突破模拟试卷含解析_第1页](http://file4.renrendoc.com/view5/M00/1F/14/wKhkGGZvmfKAUK3_AAIqH35NPXc270.jpg)
![2023-2024学年广东省江门市江海区六校中考数学对点突破模拟试卷含解析_第2页](http://file4.renrendoc.com/view5/M00/1F/14/wKhkGGZvmfKAUK3_AAIqH35NPXc2702.jpg)
![2023-2024学年广东省江门市江海区六校中考数学对点突破模拟试卷含解析_第3页](http://file4.renrendoc.com/view5/M00/1F/14/wKhkGGZvmfKAUK3_AAIqH35NPXc2703.jpg)
![2023-2024学年广东省江门市江海区六校中考数学对点突破模拟试卷含解析_第4页](http://file4.renrendoc.com/view5/M00/1F/14/wKhkGGZvmfKAUK3_AAIqH35NPXc2704.jpg)
![2023-2024学年广东省江门市江海区六校中考数学对点突破模拟试卷含解析_第5页](http://file4.renrendoc.com/view5/M00/1F/14/wKhkGGZvmfKAUK3_AAIqH35NPXc2705.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年广东省江门市江海区六校中考数学对点突破模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(共10小题,每小题3分,共30分)1.下列算式的运算结果正确的是()A.m3•m2=m6B.m5÷m3=m2(m≠0)C.(m﹣2)3=m﹣5D.m4﹣m2=m22.计算﹣2+3的结果是()A.1 B.﹣1 C.﹣5 D.﹣63.下列运算正确的是()A.6-3=3B.-32=﹣3C.a•a2=a2D.(2a4.方程2x2﹣x﹣3=0的两个根为()A.x1=,x2=﹣1 B.x1=﹣,x2=1 C.x1=,x2=﹣3 D.x1=﹣,x2=35.的倒数是()A. B.-3 C.3 D.6.如图,A,B,C,D,E,G,H,M,N都是方格纸中的格点(即小正方形的顶点),要使△DEF与△ABC相似,则点F应是G,H,M,N四点中的()A.H或N B.G或H C.M或N D.G或M7.某班要推选学生参加学校的“诗词达人”比赛,有7名学生报名参加班级选拔赛,他们的选拔赛成绩各不相同,现取其中前3名参加学校比赛.小红要判断自己能否参加学校比赛,在知道自己成绩的情况下,还需要知道这7名学生成绩的()A.众数 B.中位数 C.平均数 D.方差8.⊙O是一个正n边形的外接圆,若⊙O的半径与这个正n边形的边长相等,则n的值为()A.3 B.4 C.6 D.89.已知x1、x2是关于x的方程x2﹣ax﹣2=0的两根,下列结论一定正确的是()A.x1≠x2 B.x1+x2>0 C.x1•x2>0 D.x1<0,x2<010.如图,在△ABC中,∠C=90°,AC=BC=3cm.动点P从点A出发,以cm/s的速度沿AB方向运动到点B.动点Q同时从点A出发,以1cm/s的速度沿折线ACCB方向运动到点B.设△APQ的面积为y(cm2).运动时间为x(s),则下列图象能反映y与x之间关系的是()A. B.C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,在矩形ABCD中,AB=3,BC=5,在CD上任取一点E,连接BE,将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,则CE的长为_____.12.若圆锥的地面半径为,侧面积为,则圆锥的母线是__________.13.已知,如图,△ABC中,DE∥FG∥BC,AD∶DF∶FB=1∶2∶3,若EG=3,则AC=.14.计算(-2)×3+(-3)=_______________.15.如图,某景区的两个景点A、B处于同一水平地面上、一架无人机在空中沿MN方向水平飞行进行航拍作业,MN与AB在同一铅直平面内,当无人机飞行至C处时、测得景点A的俯角为45°,景点B的俯角为30°,此时C到地面的距离CD为100米,则两景点A、B间的距离为__米(结果保留根号).16.如图,一块飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是______.三、解答题(共8题,共72分)17.(8分)如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的高(1)△ACD与△ABC相似吗?为什么?(2)AC2=AB•AD成立吗?为什么?18.(8分)如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.(1)求证:四边形ACDF是平行四边形;(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.19.(8分)在平面直角坐标系xOy中,一次函数的图象与y轴交于点,与反比例函数
的图象交于点.求反比例函数的表达式和一次函数表达式;若点C是y轴上一点,且,直接写出点C的坐标.20.(8分)如图,为了测量建筑物AB的高度,在D处树立标杆CD,标杆的高是2m,在DB上选取观测点E、F,从E测得标杆和建筑物的顶部C、A的仰角分别为58°、45°.从F测得C、A的仰角分别为22°、70°.求建筑物AB的高度(精确到0.1m).(参考数据:tan22°≈0.40,tan58°≈1.60,tan70°≈2.1.)21.(8分)已知△ABC内接于⊙O,AD平分∠BAC.(1)如图1,求证:;(2)如图2,当BC为直径时,作BE⊥AD于点E,CF⊥AD于点F,求证:DE=AF;(3)如图3,在(2)的条件下,延长BE交⊙O于点G,连接OE,若EF=2EG,AC=2,求OE的长.22.(10分)如图,在平行四边形ABCD中,,点E、F分别是BC、AD的中点.(1)求证:≌;(2)当时,求四边形AECF的面积.23.(12分)我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.王老师采取的调查方式是(填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共件,其中b班征集到作品件,请把图2补充完整;王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,请直接写出恰好抽中一男一女的概率.24.如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.求证:PD是⊙O的切线;求证:△ABD∽△DCP;当AB=5cm,AC=12cm时,求线段PC的长.
参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】
直接利用同底数幂的除法运算法则以及合并同类项法则、积的乘方运算法则分别化简得出答案.【详解】A、m3•m2=m5,故此选项错误;B、m5÷m3=m2(m≠0),故此选项正确;C、(m-2)3=m-6,故此选项错误;D、m4-m2,无法计算,故此选项错误;故选:B.【点睛】此题主要考查了同底数幂的除法运算以及合并同类项法则、积的乘方运算,正确掌握运算法则是解题关键.2、A【解析】
根据异号两数相加的法则进行计算即可.【详解】解:因为-2,3异号,且|-2|<|3|,所以-2+3=1.故选A.【点睛】本题主要考查了异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值.3、D【解析】试题解析:A.6与3不是同类二次根式,不能合并,故该选项错误;B.(-3)2C.a⋅aD.(2a故选D.4、A【解析】
利用因式分解法解方程即可.【详解】解:(2x-3)(x+1)=0,2x-3=0或x+1=0,所以x1=,x2=-1.故选A.【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).5、A【解析】
先求出,再求倒数.【详解】因为所以的倒数是故选A【点睛】考核知识点:绝对值,相反数,倒数.6、C【解析】
根据两三角形三条边对应成比例,两三角形相似进行解答【详解】设小正方形的边长为1,则△ABC的各边分别为3、、,只能F是M或N时,其各边是6、2,2.与△ABC各边对应成比例,故选C【点睛】本题考查了相似三角形的判定,相似三角形对应边成比例是解题的关键7、B【解析】
由于总共有7个人,且他们的成绩互不相同,第4的成绩是中位数,要判断自己能否参加学校比赛,只需知道中位数即可.【详解】由于总共有7个人,且他们的成绩互不相同,第4的成绩是中位数,要判断自己能否参加学校比赛,故应知道中位数是多少.故选B.【点睛】本题考查了统计的有关知识,掌握平均数、中位数、众数、方差的意义是解题的关键.8、C【解析】
根据题意可以求出这个正n边形的中心角是60°,即可求出边数.【详解】⊙O是一个正n边形的外接圆,若⊙O的半径与这个正n边形的边长相等,则这个正n边形的中心角是60°,n的值为6,故选:C【点睛】考查正多边形和圆,求出这个正多边形的中心角度数是解题的关键.9、A【解析】分析:A、根据方程的系数结合根的判别式,可得出△>0,由此即可得出x1≠x2,结论A正确;B、根据根与系数的关系可得出x1+x2=a,结合a的值不确定,可得出B结论不一定正确;C、根据根与系数的关系可得出x1•x2=﹣2,结论C错误;D、由x1•x2=﹣2,可得出x1<0,x2>0,结论D错误.综上即可得出结论.详解:A∵△=(﹣a)2﹣4×1×(﹣2)=a2+8>0,∴x1≠x2,结论A正确;B、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,∴x1+x2=a,∵a的值不确定,∴B结论不一定正确;C、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,∴x1•x2=﹣2,结论C错误;D、∵x1•x2=﹣2,∴x1<0,x2>0,结论D错误.故选A.点睛:本题考查了根的判别式以及根与系数的关系,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.10、D【解析】
在△ABC中,∠C=90°,AC=BC=3cm,可得AB=,∠A=∠B=45°,分当0<x≤3(点Q在AC上运动,点P在AB上运动)和当3≤x≤6时(点P与点B重合,点Q在CB上运动)两种情况求出y与x的函数关系式,再结合图象即可解答.【详解】在△ABC中,∠C=90°,AC=BC=3cm,可得AB=,∠A=∠B=45°,当0<x≤3时,点Q在AC上运动,点P在AB上运动(如图1),由题意可得AP=x,AQ=x,过点Q作QN⊥AB于点N,在等腰直角三角形AQN中,求得QN=x,所以y==(0<x≤3),即当0<x≤3时,y随x的变化关系是二次函数关系,且当x=3时,y=4.5;当3≤x≤6时,点P与点B重合,点Q在CB上运动(如图2),由题意可得PQ=6-x,AP=3,过点Q作QN⊥BC于点N,在等腰直角三角形PQN中,求得QN=(6-x),所以y==(3≤x≤6),即当3≤x≤6时,y随x的变化关系是一次函数,且当x=6时,y=0.由此可得,只有选项D符合要求,故选D.【点睛】本题考查了动点函数图象,解决本题要正确分析动线运动过程,然后再正确计算其对应的函数解析式,由函数的解析式对应其图象,由此即可解答.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】
设CE=x,由矩形的性质得出AD=BC=5,CD=AB=3,∠A=∠D=90°.由折叠的性质得出BF=BC=5,EF=CE=x,DE=CD-CE=3-x.在Rt△ABF中利用勾股定理求出AF的长度,进而求出DF的长度;然后在Rt△DEF根据勾股定理列出关于x的方程即可解决问题.【详解】设CE=x.∵四边形ABCD是矩形,∴AD=BC=5,CD=AB=3,∠A=∠D=90°.∵将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,∴BF=BC=5,EF=CE=x,DE=CD-CE=3-x.在Rt△ABF中,由勾股定理得:AF2=52-32=16,∴AF=4,DF=5-4=1.在Rt△DEF中,由勾股定理得:EF2=DE2+DF2,即x2=(3-x)2+12,解得:x=,故答案为.12、13【解析】试题解析:圆锥的侧面积=×底面半径×母线长,把相应数值代入即可求解.设母线长为R,则:解得:故答案为13.13、1【解析】试题分析:根据DE∥FG∥BC可得△ADE∽△AFG∽ABC,根据题意可得EG:AC=DF:AB=2:6=1:3,根据EG=3,则AC=1.考点:三角形相似的应用.14、-9【解析】
根据有理数的计算即可求解.【详解】(-2)×3+(-3)=-6-3=-9【点睛】此题主要考查有理数的混合运算,解题的关键是熟知有理数的运算法则.15、100+100【解析】【分析】由已知可得∠ACD=∠MCA=45°,∠B=∠NCB=30°,继而可得∠DCB=60°,从而可得AD=CD=100米,DB=100米,再根据AB=AD+DB计算即可得.【详解】∵MN//AB,∠MCA=45°,∠NCB=30°,∴∠ACD=∠MCA=45°,∠B=∠NCB=30°,∵CD⊥AB,∴∠CDA=∠CDB=90°,∠DCB=60°,∵CD=100米,∴AD=CD=100米,DB=CD•tan60°=CD=100米,∴AB=AD+DB=100+100(米),故答案为:100+100.【点睛】本题考查了解直角三角形的应用﹣﹣仰角俯角问题,解题的关键是借助俯角构造直角三角形并解直角三角形.注意方程思想与数形结合思想的应用.16、【解析】
求出黑色区域面积与正方形总面积之比即可得答案.【详解】图中有9个小正方形,其中黑色区域一共有3个小正方形,所以随意投掷一个飞镖,击中黑色区域的概率是,故答案为.【点睛】本题考查了几何概率,熟练掌握概率的计算公式是解题的关键.注意面积之比几何概率.三、解答题(共8题,共72分)17、(1)△ACD与△ABC相似;(2)AC2=AB•AD成立.【解析】
(1)求出∠ADC=∠ACB=90°,根据相似三角形的判定推出即可;(2)根据相似三角形的性质得出比例式,再进行变形即可.【详解】解:(1)△ACD与△ABC相似,理由是:∵在Rt△ABC中,∠ACB=90°,CD是斜边AB上的高,∴∠ADC=∠ACB=90°,∵∠A=∠A,∴△ACD∽∠ABC;(2)AC2=AB•AD成立,理由是:∵△ACD∽∠ABC,∴=,∴AC2=AB•AD.【点睛】本题考查了相似三角形的性质和判定,能根据相似三角形的判定定理推出△ACD∽△ABC是解此题的关键.18、(1)证明见解析;(2)BC=2CD,理由见解析.【解析】分析:(1)利用矩形的性质,即可判定△FAE≌△CDE,即可得到CD=FA,再根据CD∥AF,即可得出四边形ACDF是平行四边形;(2)先判定△CDE是等腰直角三角形,可得CD=DE,再根据E是AD的中点,可得AD=2CD,依据AD=BC,即可得到BC=2CD.详解:(1)∵四边形ABCD是矩形,∴AB∥CD,∴∠FAE=∠CDE,∵E是AD的中点,∴AE=DE,又∵∠FEA=∠CED,∴△FAE≌△CDE,∴CD=FA,又∵CD∥AF,∴四边形ACDF是平行四边形;(2)BC=2CD.证明:∵CF平分∠BCD,∴∠DCE=45°,∵∠CDE=90°,∴△CDE是等腰直角三角形,∴CD=DE,∵E是AD的中点,∴AD=2CD,∵AD=BC,∴BC=2CD.点睛:本题主要考查了矩形的性质以及平行四边形的判定与性质,要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.19、(1)y=,y=-x+1;(2)C(0,3+1)或C(0,1-3).【解析】
(1)依据一次函数的图象与轴交于点,与反比例函数的图象交于点,即可得到反比例函数的表达式和一次函数表达式;(2)由,可得:,即可得到,再根据,可得或,即可得出点的坐标.【详解】(1)∵双曲线过,将代入,解得:.∴所求反比例函数表达式为:.∵点,点在直线上,∴,,∴,∴所求一次函数表达式为.(2)由,可得:,∴.又∵,∴或,∴,或,.【点睛】本题考查了待定系数法求反比例函数、一次函数的解析式和反比例函数与一次函数的交点问题.此题难度适中,注意掌握数形结合思想的应用.20、建筑物AB的高度约为5.9米【解析】
在△CED中,得出DE,在△CFD中,得出DF,进而得出EF,列出方程即可得出建筑物AB的高度;【详解】在Rt△CED中,∠CED=58°,∵tan58°=,∴DE=,在Rt△CFD中,∠CFD=22°,∵tan22°=,∴DF=,∴EF=DF﹣DE=-,同理:EF=BE﹣BF=,∴=-,解得:AB≈5.9(米),答:建筑物AB的高度约为5.9米.【点睛】考查解直角三角形的应用,解题的关键是明确题意,利用数形结合的思想解答问题.21、(1)证明见解析;(1)证明见解析;(3)1.【解析】
(1)连接OB、OC、OD,根据圆心角与圆周角的性质得∠BOD=1∠BAD,∠COD=1∠CAD,又AD平分∠BAC,得∠BOD=∠COD,再根据圆周角相等所对的弧相等得出结论.(1)过点O作OM⊥AD于点M,又一组角相等,再根据平行线的性质得出对应边成比例,进而得出结论;(3)延长EO交AB于点H,连接CG,连接OA,BC为⊙O直径,则∠G=∠CFE=∠FEG=90°,四边形CFEG是矩形,得EG=CF,又AD平分∠BAC,再根据邻补角与余角的性质可得∠BAF=∠ABE,∠ACF=∠CAF,AE=BE,AF=CF,再根据直角三角形的三角函数计算出边的长,根据“角角边”证明出△HBO∽△ABC,根据相似三角形的性质得出对应边成比例,进而得出结论.【详解】(1)如图1,连接OB、OC、OD,∵∠BAD和∠BOD是所对的圆周角和圆心角,∠CAD和∠COD是所对的圆周角和圆心角,∴∠BOD=1∠BAD,∠COD=1∠CAD,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠BOD=∠COD,∴=;(1)如图1,过点O作OM⊥AD于点M,∴∠OMA=90°,AM=DM,∵BE⊥AD于点E,CF⊥AD于点F,∴∠CFM=90°,∠MEB=90°,∴∠OMA=∠MEB,∠CFM=∠OMA,∴OM∥BE,OM∥CF,∴BE∥OM∥CF,∴,∵OB=OC,∴=1,∴FM=EM,∴AM﹣FM=DM﹣EM,∴DE=AF;(3)延长EO交AB于点H,连接CG,连接OA.∵BC为⊙O直径,∴∠BAC=90°,∠G=90°,∴∠G=∠CFE=∠FEG=90°,∴四边形CFEG是矩形,∴EG=CF,∵AD平分∠BAC,∴∠BAF=∠CAF=×90°=45°,∴∠ABE=180°﹣∠BAF﹣∠AEB=45°,∠ACF=180°﹣∠CAF﹣∠AFC=45°,∴∠BAF=∠ABE,∠ACF=∠CAF,∴AE=BE,AF=CF,在Rt△ACF中,∠AFC=90°,∴sin∠CAF=,即sin45°=,∴CF=1×=,∴EG=,∴EF=1EG=1,∴AE=3,在Rt△AEB中,∠AEB=90°,∴AB==6,∵AE=BE,OA=OB,∴EH垂直平分AB,∴BH=EH=3,∵∠OHB=∠BAC,∠ABC=∠ABC∴△HBO∽△ABC,∴,∴OH=1,∴OE=EH﹣OH=3﹣1=1.【点睛】本题考查了相似三角形的判定与性质和圆的相关知识点,解题的关键是熟练的掌握相似三角形的判定与性质和圆的相关知识点.22、(1)见解析;(2)【解析】
(1)根据平行四边形的性质得出AB=CD,BC=AD,∠B=∠D,求出BE=DF,根据全等三角形的判定推出即可;
(2)求出△ABE是等边三角形,求出高AH的长,再求出面积即可.【详解】(1)证明:∵四边形ABCD是平行四边形,∴,,,∵点E、F分别是BC、AD的中点,∴,,∴,在和中,∴≌();(2)作于H,∵四边形ABCD是平行四边形,∴,,∵点E、F分别是BC、AD的中点,,∴,,∴,,∴四边形AECF是平行四边形,∵,∴四边形AECF是菱形,∴,∵,∴,即是等边三角形,,由勾股定理得:,∴四边形AECF的面积是.【点睛】本题考查了等边三角形的性质和判定,全等三角形的判定,平行四边形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键.23、(1)抽样调查;12;3;(2)60;(3).【解析】试题分析:(1)根据只抽取了4个班可知是抽样调查,根据C在扇形图中的角度求出所占的份数,再根据C的人数是5,列式进行计算即可求出作品的件数,然后减去A、C、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2025学年度九年级物理全册15.2电流和电路教学设计2新版新人教版
- 生产技术员工作总结
- 一年级班队上学期工作计划
- 工地保安部年终工作总结
- 教育教学工作计划书
- 景区酒店合作协议书范本
- 驾驶员安全协议书范本
- 学员听评课记录表怎么填
- 自相矛盾听评课记录表
- 北京4年级数学试卷
- 长江委水文局2025年校园招聘17人历年高频重点提升(共500题)附带答案详解
- 2025年湖南韶山干部学院公开招聘15人历年高频重点提升(共500题)附带答案详解
- 广东省广州市番禺区2023-2024学年七年级上学期期末数学试题
- 不可切除肺癌放疗联合免疫治疗专家共识(2024年版)j解读
- 教科版科学六年级下册14《设计塔台模型》课件
- 智研咨询发布:2024年中国MVR蒸汽机械行业市场全景调查及投资前景预测报告
- 法规解读丨2024新版《突发事件应对法》及其应用案例
- JGJ46-2024 建筑与市政工程施工现场临时用电安全技术标准
- 信息安全意识培训课件
- 家谱、宗谱颁谱庆典讲话
- 新员工入职登记表
评论
0/150
提交评论