2025届甘肃省临夏回族自治州临夏中学数学高一下期末统考试题含解析_第1页
2025届甘肃省临夏回族自治州临夏中学数学高一下期末统考试题含解析_第2页
2025届甘肃省临夏回族自治州临夏中学数学高一下期末统考试题含解析_第3页
2025届甘肃省临夏回族自治州临夏中学数学高一下期末统考试题含解析_第4页
2025届甘肃省临夏回族自治州临夏中学数学高一下期末统考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届甘肃省临夏回族自治州临夏中学数学高一下期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的部分图像如图所示,如果,且,则等于()A. B. C. D.12.已知,是两条不同的直线,,是两个不同的平面,若,,则下列命题正确的是A.若,,则B.若,且,则C.若,,则D.若,且,则3.已知集合A={x∈N|0≤x≤3},B={x∈R|-2<x<2}则A∩B()A.{0,1} B.{1} C.[0,1] D.[0,2)4.我国古代数学家刘徽在《九章算术注》中提出割圆术:“割之弥细,所失弥少,割之割,以至于不可割,则与圆合体,而无所失矣”,即通过圆内接正多边形细割圆,并使正多边形的面积无限接近圆的面积,进而来求得较为精确的圆周率.如果用圆的内接正边形逼近圆,算得圆周率的近似值记为,那么用圆的内接正边形逼近圆,算得圆周率的近似值加可表示成()A. B. C. D.5.设长方体的长、宽、高分别为2,1,1,其顶点都在同一个球面上,则该球的表面积为()A. B. C. D.6.在中,,则此三角形解的情况是()A.一解 B.两解 C.一解或两解 D.无解7.如图,在等腰梯形中,,于点,则()A. B.C. D.8.甲、乙、丙、丁四名运动员参加奥运会射击项目选拔赛,四人的平均成绩和方差如下表所示,从这四个人中选择一人参加奥运会射击项目比赛,最佳人选是()人数据甲乙丙丁平均数8.68.98.98.2方差3.53.52.15.6A.甲 B.乙 C.丙 D.丁9.已知角的终边经过点,则()A. B. C.-2 D.10.如图是函数一个周期的图象,则的值等于A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若关于的不等式的解集为,则__________12.已知正方体中,,分别为,的中点,那么异面直线与所成角的余弦值为______.13.函数的值域是______.14.(理)已知函数,若对恒成立,则的取值范围为.15.若直线始终平分圆的周长,则的最小值为________16.若角是第四象限角,则角的终边在_____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.解关于x的不等式18.在平面直角坐标系下,已知圆O:,直线l:()与圆O相交于A,B两点,且.(1)求直线l的方程;(2)若点E,F分别是圆O与x轴的左、右两个交点,点D满足,点M是圆O上任意一点,点N在线段上,且存在常数使得,求点N到直线l距离的最小值.19.已知.(1)求函数的最小正周期;(2)求函数在闭区间上的最小值并求当取最小值时,的取值.20.等差数列的前项和为,数列是等比数列,满足,,,,.(1)求数列和的通项公式;(2)令,求数列的前项和.21.已知,,其中,,且函数在处取得最大值.(1)求的最小值,并求出此时函数的解析式和最小正周期;(2)在(1)的条件下,先将的图像上的所有点向右平移个单位,再把所得图像上所有点的横坐标伸长为原来的2倍(纵坐标不变),然后将所得图像上所有的点向下平移个单位,得到函数的图像.若在区间上,方程有两个不相等的实数根,求实数a的取值范围;(3)在(1)的条件下,已知点P是函数图像上的任意一点,点Q为函数图像上的一点,点,且满足,求的解集.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

试题分析:观察图象可知,其在的对称轴为,由已知,选.考点:正弦型函数的图象和性质2、D【解析】

利用面面、线面位置关系的判定和性质,直接判定.【详解】解:对于A,若n∥α,m∥β,则α∥β或α与β相交,故错;对于B,若α∩β=l,且m⊥l,则m与β不一定垂直,故错;对于C,若m∥n,m∥β,则α与β位置关系不定,故错;对于D,∵α∩β=l,∴l⊂β,∵m∥l,则m∥β,故正确.故选D.【点睛】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间中线线、线面、面面间相互关系的合理运用.3、A【解析】

可解出集合A,然后进行交集的运算即可.【详解】A={0,1,2,3},B={x∈R|﹣2<x<2};∴A∩B={0,1}.故选:A.【点睛】本题考查交集的运算,是基础题,注意A中x∈N4、C【解析】

设圆的半径为,由内接正边形的面积无限接近圆的面积可得:,由内接正边形的面积无限接近圆的面积可得:,问题得解.【详解】设圆的半径为,将内接正边形分成个小三角形,由内接正边形的面积无限接近圆的面积可得:,整理得:,此时,即:同理,由内接正边形的面积无限接近圆的面积可得:,整理得:此时所以故选C【点睛】本题主要考查了圆的面积公式及三角形面积公式的应用,还考查了正弦的二倍角公式,考查计算能力,属于中档题.5、B【解析】

先求出长方体的对角线的长度,即得外接球的直径,再求球的表面积得解.【详解】由题得长方体外接球的直径.故选:B【点睛】本题主要考查长方体的外接球的表面积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.6、B【解析】由题意知,,,,∴,如图:∵,∴此三角形的解的情况有2种,故选B.7、A【解析】

根据等腰三角形的性质可得是的中点,由平面向量的加法运算法则结合向量平行的性质可得结果.【详解】因为,所以是的中点,可得,故选.【点睛】本题主要考查向量的几何运算以及向量平行的性质,属于简单题.向量的运算有两种方法,一是几何运算往往结合平面几何知识和三角函数知识解答,运算法则是:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和);二是坐标运算:建立坐标系转化为解析几何问题解答(求最值与范围问题,往往利用坐标运算比较简单)8、C【解析】

甲,乙,丙,丁四个人中乙和丙的平均数最大且相等,甲,乙,丙,丁四个人中丙的方差最小,说明丙的成绩最稳定,得到丙是最佳人选.【详解】甲,乙,丙,丁四个人中乙和丙的平均数最大且相等,甲,乙,丙,丁四个人中丙的方差最小,说明丙的成绩最稳定,综合平均数和方差两个方面说明丙成绩即高又稳定,丙是最佳人选,故选:C.【点睛】本题考查平均数和方差的实际应用,考查数据处理能力,求解时注意方差越小数据越稳定.9、B【解析】按三角函数的定义,有.10、A【解析】

利用图象得到振幅,周期,所以,再由图象关于成中心对称,把原式等价于求的值.【详解】由图象得:振幅,周期,所以,所以,因为图象关于成中心对称,所以,,所以原式,故选A.【点睛】本题考查三角函数的周期性、对称性等性质,如果算出每个值再相加,会浪费较多时间,且容易出错,采用对称性求解,能使问题的求解过程变得更简洁.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】

根据二次不等式和二次方程的关系,得到是方程的两根,由根与系数的关系得到的值.【详解】因为关于的不等式的解集为所以是方程的两根,,由根与系数的关系得,解得【点睛】本题考查一元二次不等式和一元二次方程之间的关系,根与系数之间的关系,属于简单题.12、【解析】

异面直线所成角,一般平移到同一个平面求解.【详解】连接DF,异面直线与所成角等于【点睛】异面直线所成角,一般平移到同一个平面求解.不能平移时通常考虑建系,利用向量解决问题.13、【解析】

先求得函数的定义域,根据函数在定义域内的单调性,求得函数的值域.【详解】依题意可知,函数的定义域为,且函数在区间上为单调递增函数,故当时,函数有最小值为,当时,函数有最大值为.所以函数函数的值域是.故答案为:.【点睛】本小题主要考查反正弦函数的定义域和单调性,考查正弦函数的单调性,考查利用函数的单调性求函数的值域,属于基础题.14、【解析】试题分析:函数要使对恒成立,只要小于或等于的最小值即可,的最小值是0,即只需满足,解得.考点:恒成立问题.15、9【解析】

平分圆的直线过圆心,由此求得的等量关系式,进而利用基本不等式求得最小值.【详解】由于直线始终平分圆的周长,故直线过圆的圆心,即,所以.【点睛】本小题主要考查直线和圆的位置关系,考查利用基本不等式求最小值,属于基础题.16、第二或第四象限【解析】

根据角是第四象限角,写出角的范围,即可求出角的终边所在位置.【详解】因为角是第四象限角,所以,即有,当为偶数时,角的终边在第四象限;当为奇数时,角的终边在第二象限,故角的终边在第二或第四象限.【点睛】本题主要考查象限角的集合的应用.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、见解析.【解析】试题分析:(1)讨论的取值,分为,两种情形,求出对应不等式的解集即可.试题解析:当a=0时,原不等式化为x+10,解得;当时,原不等式化为,解得;综上所述,当a=0时,不等式的解集为,当时,不等式的解集为.点睛:本题考查了含有字母系数的不等式的解法与应用问题,元二次不等式的核心还是求一元二次方程的根,然后在结合图象判定其区间解题时应用分类讨论的思想,是中档题目;常见的讨论形式有:1、对二项式系数进行讨论;2、相对应的方程是否有根进行讨论;3、对应根的大小进行讨论.18、(1);(2).【解析】

(1)等价于圆心O到直线l的距离,再由点到直线的距离公式求解即可;(2)先设点,再结合题意可得点N在以为圆心,半径为的圆R上,再结合点到直线的距离公式求解即可.【详解】解:(1)∵圆O:,圆心,半径,∵直线l:()与圆O相交于A,B两点,且,∴圆心O到直线l的距离,又,,解得,∴直线l的方程为;(2)∵点E,F分别是圆O与x轴的左、右两个交点,,∴,,设,,则,,,,,即.又∵点N在线段上,即,共线,,,∵点M是圆O上任意一点,,∴将m,n代入上式,可得,即.则点N在以为圆心,半径为的圆R上.圆心R到直线l:的距离,又,故点N到直线l:距离的最小值为1.【点睛】本题考查了点到直线的距离公式,重点考查了点的轨迹方程的求法,属中档题.19、(1);(2),【解析】

(1)先化简,再求最小正周期;(2)由,得,再结合的函数图像求最小值.【详解】(1),即,所以的最小正周期是;(2)由(1)知,又由,得,所以当时,的最小值为,即时,的最小值为.【点睛】本题考查三角恒等变换,考查三角函数图像的性质应用,属于中档题.20、(1),;(2)【解析】

(1)由是等差数列,,,可求出,由是等比数列,,,,可求出;(2)将和的通项公式代入,则,利用裂项相消求和法可求出.【详解】(1),,,解得.又,,.(2)由(1),得【点睛】本题考查了等差数列和等比数列的通项公式的求法,考查了用裂项相消求数列的前项和,属于中档题.21、(1)的最小值为1,,,(2)(3)原不等式的解集为【解析】

(1)先将化成正弦型,然后利用在处取得最大值求出,然后即可得到的解析式和周期(2)先根据图象的变换得到,然后画出在区间上的图象,条件转化为的图象与直线有两个交点即可(3)利用坐标的对应关系式,求出的函数的关系式,进一步利用三角不等式的应用求出结果.【详解】(1)因为,所以因为在处取得最大值.所以,即当时的最小值为1此时,(2)将的图像上

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论