2025届福建省三明市第一中学数学高一下期末监测试题含解析_第1页
2025届福建省三明市第一中学数学高一下期末监测试题含解析_第2页
2025届福建省三明市第一中学数学高一下期末监测试题含解析_第3页
2025届福建省三明市第一中学数学高一下期末监测试题含解析_第4页
2025届福建省三明市第一中学数学高一下期末监测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届福建省三明市第一中学数学高一下期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.要得到函数的图象,只需将函数的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度2.设有直线和平面,则下列四个命题中,正确的是()A.若m∥α,n∥α,则m∥n B.若m⊂α,n⊂α,m∥β,l∥β,则α∥βC.若α⊥β,m⊂α,则m⊥β D.若α⊥β,m⊥β,m⊄α,则m∥α3.执行下边的程序框图,如果输出的值为1,则输入的值为()A.0 B. C.0或 D.0或14.已知向量,若,则()A.1 B. C.2 D.35.如果将直角三角形的三边都增加1个单位长度,那么新三角形()A.一定是锐角三角形 B.一定是钝角三角形C.一定是直角三角形 D.形状无法确定6.已知为递增等比数列,则()A. B.5 C.6 D.7.如果成等差数列,成等比数列,那么等于()A. B. C. D.8.若a,b是方程的两个根,且a,b,2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则的值为()A.-4 B.-3 C.-2 D.-19.在中,内角所对的边分别是.已知,,,则A. B. C. D.10.在中,若,则下列结论错误的是()A.当时,是直角三角形 B.当时,是锐角三角形C.当时,是钝角三角形 D.当时,是钝角三角形二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,则当最大时,________.12.若实数满足,则取值范围是____________。13.已知,则__________.14.已知为锐角,,则________.15.在等比数列中,若,则等于__________.16.从甲、乙、丙、丁四个学生中任选两人到一个单位实习,余下的两人到另一单位实习,则甲、乙两人不在同一单位实习的概率为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,,函数.(1)若,求的取值集合;(2)当时,不等式恒成立,求的取值范围.18.已知直线:,一个圆的圆心在轴上且该圆与轴相切,该圆经过点.(1)求圆的方程;(2)求直线被圆截得的弦长.19.某制造商月生产了一批乒乓球,随机抽样个进行检查,测得每个球的直径(单位:mm),将数据分组如下表分组频数频率10205020合计100(1)请在上表中补充完成频率分布表(结果保留两位小数),并在上图中画出频率分布直方图;(2)统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值是作为代表.据此估计这批乒乓球直径的平均值(结果保留两位小数).20.如图所示,在直三棱柱中,,,M、N分别为、的中点.求证:平面;求证:平面.21.已知函数.(1)当时,,求的值;(2)令,若对任意都有恒成立,求的最大值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

由,则只需将函数的图象向左平移个单位长度.【详解】解:因为,所以要得到函数的图象,只需将函数的图象向左平移个单位长度.故选:C.【点睛】本题考查了三角函数图像的平移变换,属基础题.2、D【解析】

在A中,m与n相交、平行或异面;在B中,α与β相交或平行;在C中,m⊥β或m∥β或m与β相交;在D中,由直线与平面垂直的性质与判定定理可得m∥α.【详解】由直线m、n,和平面α、β,知:对于A,若m∥α,n∥α,则m与n相交、平行或异面,故A错误;对于B,若m⊂α,n⊂α,m∥β,n∥β,则α∥β或α与β相交,故B错误;对于中,若α⊥β,α⊥β,m⊂α,则m⊥β或m∥β或m与β相交,故C错误;对于D,若α⊥β,m⊥β,m⊄α,则由直线与平面垂直的性质与判定定理得m∥α,故D正确.故选D.【点睛】本题考查了命题真假的判断问题,考查了空间线线、线面、面面的位置关系的判定定理及推论的应用,体现符号语言与图形语言的相互转化,是中档题.3、C【解析】

根据程序框图,转化为条件函数进行计算即可.【详解】程序对应的函数为y,若x≤0,由y=1得ex=1,得x=0,满足条件.若x>0,由y=2﹣lnx=1,得lnx=1,即x=e,满足条件.综上x=0或e,故选C.【点睛】本题主要考查程序框图的识别和应用,根据条件转化为分段函数是解决本题的关键.4、B【解析】

可求出,根据即可得出,进行数量积的坐标运算即可求出x.【详解】;∵;∴;解得.故选B.【点睛】本题考查向量垂直的充要条件,向量坐标的减法和数量积运算,属于基础题.5、A【解析】

直角三角形满足勾股定理,,再比较,,大小关系即可.【详解】设直角三角形满足,则,又为新三角形最长边,所以所以最大角为锐角,所以三角形为锐角三角形.故选A【点睛】判断三角形形状一般可通过余弦定理判断,若有一角的余弦值小于零则为钝角三角形,等于零则为直角三角形,最大角的余弦值大于零则为锐角三角形,属于较易题目.6、D【解析】

设数列的公比为,根据等比数列的性质,得,又由,求得,进而可求解的值,得到答案.【详解】根据题意,等比数列中,设其公比为,因为,则有,又由,且,解得,所以,所以,故选D.【点睛】本题主要考查了等比数列的通项公式和等比数列的性质的应用,其中解答中熟练应用等比数列的性质,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.7、D【解析】

因为成等差数列,所以,因为成等比数列,所以,因此.故选D8、D【解析】

由韦达定理确定,,利用已知条件讨论成等差数列和等比数列的位置,从而确定的值.【详解】由韦达定理得:,,所以,由题意这三个数可适当排序后成等比数列,且,则2一定在中间所以,即因为这三个数可适当排序后成等差数列,且,则2一定不在的中间假设,则即故选D【点睛】本题考查了等差数列和等比数列的基本性质,解决本题的关键是要掌握三个数成等差数列和等比数列的性质,如成等比数列,且,,则2必为等比中项,有.9、B【解析】

由已知三边,利用余弦定理可得,结合,为锐角,可得,利用三角形内角和定理即可求的值.【详解】在中,,,,由余弦定理可得:,,故为锐角,可得,,故选.【点睛】本题主要考查利用余弦定理解三角形以及三角形内角和定理的应用.10、D【解析】

由正弦定理化简已知可得,利用余弦定理,勾股定理,三角形两边之和大于第三边等知识逐一分析各个选项即可得解.【详解】解:为非零实数),可得:,由正弦定理,可得:,对于A,时,可得:,可得,即为直角,可得是直角三角形,故正确;对于B,时,可得:,可得为最大角,由余弦定理可得,可得是锐角三角形,故正确;对于C,时,可得:,可得为最大角,由余弦定理可得,可得是钝角三角形,故正确;对于D,时,可得:,可得,这样的三角形不存在,故错误.故选:D.【点睛】本题主要考查了正弦定理,余弦定理,勾股定理在解三角形中的应用,考查了分类讨论思想,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据正切的和角公式,将用的函数表示出来,利用均值不等式求最值,求得取得最大值的,再用倍角公式即可求解.【详解】故可得则当且仅当,即时,此时有故答案为:.【点睛】本题考查正切的和角公式,以及倍角公式,涉及均值不等式的使用.12、;【解析】

利用三角换元,设,;利用辅助角公式将化为,根据三角函数值域求得结果.【详解】可设,,本题正确结果:【点睛】本题考查利用三角换元法求解取值范围的问题,关键是能够将问题转化为三角函数值域的求解问题.13、【解析】14、【解析】

利用同角三角函数的基本关系求出,并利用二倍角正切公式计算出的值,再利用两角和的正切公式求出的值.【详解】为锐角,则,,由二倍角正切公式得,因此,,故答案为.【点睛】本题考查同角三角函数的基本关系求值、二倍角正切公式和两角和的正切公式求值,解题的关键就是灵活利用这些公式进行计算,考查运算求解能力,属于中等题.15、【解析】

由等比数列的性质可得,,代入式子中运算即可.【详解】解:在等比数列中,若故答案为:【点睛】本题考查等比数列的下标和性质的应用.16、.【解析】

求得从甲、乙、丙、丁四个学生中任选两人的总数和甲、乙两人不在同一单位实习的方法数,由古典概型的概率计算公式可得所求值.【详解】解:从甲、乙、丙、丁四个学生中任选两人的方法数为种,甲、乙两人不在同一单位实习的方法数为种,则甲、乙两人不在同一单位实习的概率为.故答案为:.【点睛】本题主要考查古典概型的概率计算公式,考查运算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或;(2).【解析】

(1)由题化简得.再解方程即得解;(2)由题得在上恒成立,再求不等式右边函数的最小值即得解.【详解】解:(1)因为,,所以.因为,所以.解得或.故的取值集合为.(2)由(1)可知,所以在上恒成立.因为,所以,所以在上恒成立.设,则.所以.因为,所以,所以.故的取值范围为.【点睛】本题主要考查三角恒等变换和解三角方程,考查三角函数最值的求法和恒成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题.18、(1);(2).【解析】

(1)由题意设圆心,半径,将点代入圆C的方程可求得a,可得圆的方程;(2)求出圆心C到直线l的距离d,利用勾股定理求出l被圆C所截得弦长.【详解】(1)∵圆心在轴上且该圆与轴相切,∴设圆心,半径,,设圆的方程为,将点代入得,∴,∴所求圆的方程为.(2)∵圆心到直线:的距离,∴直线被圆截得的弦长为.【点睛】本题考查了直线与圆的位置关系及圆的方程的应用问题,考查了垂径定理的应用,是基础题.19、(1)见解析;(2)40.00(mm)【解析】解:(1)频率分布表如下:分组

频数

频率

[39.95,39.97)

10

0.10

5

[39.97,39.99)

20

0.20

10

[39.99,40.01)

50

0.50

25

[40.01,40.03]

20

0.20

10

合计

100

1

注:频率分布表可不要最后一列,这里列出,只是为画频率分布直方图方便.频率分布直方图如下:(2)整体数据的平均值约为39.96×0.10+39.98×0.20+40.00×0.50+40.02×0.20≈40.00(mm).20、(1)见解析;(2)见解析.【解析】

(1)推导出,从而平面,进而,再由,,得是正方形,由此能证明平面.取的中点F,连BF、推导出四边形BMNF是平行四边形,从而,由此能证明平面.【详解】证明:在直三棱柱中,侧面底面ABC,且侧面底面,,即,平面,平面,,,是正方形,,平面取的中点F,连BF、在中,N、F是中点,,,又,,,,故四边形BMNF是平行四边形,,而面,平面,平面

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论