2025届重庆铜梁县一中高一下数学期末统考试题含解析_第1页
2025届重庆铜梁县一中高一下数学期末统考试题含解析_第2页
2025届重庆铜梁县一中高一下数学期末统考试题含解析_第3页
2025届重庆铜梁县一中高一下数学期末统考试题含解析_第4页
2025届重庆铜梁县一中高一下数学期末统考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届重庆铜梁县一中高一下数学期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.数列中,,则数列的极限值()A.等于0 B.等于1 C.等于0或1 D.不存在2.在非直角中,“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要3.已知角的终边经过点,则=()A. B. C. D.4.设等差数列{an}的前n项的和Sn,若a2+a8=6,则S9=()A.3 B.6 C.27 D.545.不等式x2+ax+4>0对任意实数x恒成立,则实数a的取值范围为()A.(﹣4,4) B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,+∞) D.6.若函数的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数的图像可能是()A. B. C. D.7.的值是()A. B. C. D.8.办公室装修一新,放些植物花草可以清除异味,公司提供绿萝、文竹、碧玉、芦荟4种植物供员工选择,每个员工任意选择2种,则员工甲和乙选择的植物全不同的概率为:A. B. C. D.9.在三棱锥中,平面,,,点M为内切圆的圆心,若,则三棱锥的外接球的表面积为()A. B. C. D.10.某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.________12.已知,且这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则_______________.13.在轴上有一点,点到点与点的距离相等,则点坐标为____________.14.已知向量,则________15.已知向量,,且,则的值为________.16.在正数数列an中,a1=1,且点an,an-1三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在梯形ABCD中,,,,.(1)求AC的长;(2)求梯形ABCD的高.18.已知(且)是R上的奇函数,且.(1)求的解析式;(2)若关于x的方程在区间内只有一个解,求m的取值集合;(3)设,记,是否存在正整数n,使不得式对一切均成立?若存在,求出所有n的值,若不存在,说明理由.19.设数列的前项和为,且.(1)求数列的通项公式;(2)若,为数列位的前项和,求;(3)在(2)的条件下,是否存在自然数,使得对一切恒成立?若存在,求出的值;若不存在,说明理由.20.已知.(I)若函数有三个零点,求实数的值;(II)若对任意,均有恒成立,求实数的取值范围.21.(1)求函数的单调递增区间;(2)求函数,的单调递减区间.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

根据题意得到:时,,再计算即可.【详解】因为当时,.所以.故选:B【点睛】本题主要考查数列的极限,解题时要注意公式的选取和应用,属于中档题.2、C【解析】

由得出,利用切化弦的思想得出其等价条件,再利用充分必要性判断出两条件之间的关系.【详解】若,则,易知,,,,,,,,,.因此,“”是“”的充要条件,故选C.【点睛】本题考查充分必要性的判断,同时也考查了切化弦思想、两角和差的正弦公式的应用,在讨论三角函数值符号时,要充分考虑角的取值范围,考查分析问题和解决问题的能力,属于中等题.3、D【解析】试题分析:由题意可知x=-4,y=3,r=5,所以.故选D.考点:三角函数的概念.4、C【解析】

利用等差数列的性质和求和公式,即可求得的值,得到答案.【详解】由题意,等差数列的前n项的和,由,根据等差数列的性质,可得,所以,故选:C.【点睛】本题主要考查了等差数列的性质,以及等差数列的前n项和公式的应用,着重考查了推理与运算能力,属于基础题.5、A【解析】

根据二次函数的性质求解.【详解】不等式x2+ax+4>0对任意实数x恒成立,则,∴.故选A.【点睛】本题考查一元二次不等式恒成立问题,解题时可借助二次函数的图象求解.6、B【解析】因为对A不符合定义域当中的每一个元素都有象,即可排除;对B满足函数定义,故符合;对C出现了定义域当中的一个元素对应值域当中的两个元素的情况,不符合函数的定义,从而可以否定;对D因为值域当中有的元素没有原象,故可否定.故选B.7、A【解析】由于==.故选A.8、A【解析】

从公司提供的4中植物中任意选择2种,求得员工甲和乙共有种选法,再由任选2种有种,得到员工甲和乙选择的植物全不同有种选法,利用古典概型的概率计算公式,即可求解.【详解】由题意,从公司提供绿萝、文竹、碧玉、芦荟4种植物每个员工任意选择2种,则员工甲和乙共有种不同的选法,又从公司提供绿萝、文竹、碧玉、芦荟4种植物中,任选2种,共有种选法,则员工甲和乙选择的植物全不同,共有种不同的选法,所以员工甲和乙选择的植物全不同的概率为,故选A.【点睛】本题主要考查了古典概型及其概率的计算,以及排列、组合的应用,其中解答中认真审题,合理利用排列、组合求得基本事件的个数,利用古典概型的概率计算公式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.9、C【解析】

求三棱锥的外接球的表面积即求球的半径,则球心到底面的距离为,根据正切和MA的长求PA,再和MA的长即可通过勾股定理求出球半径R,则表面积.【详解】取BC的中点E,连接AE(图略).因为,所以点M在AE上,因为,,所以,则的面积为,解得,所以.因为,所以.设的外接圆的半径为r,则,解得.因为平面ABC,所以三棱锥的外接球的半径为,故三棱锥P-ABC的外接球的表面积为.【点睛】此题关键点通过题干信息画出图像,平面ABC和底面的内切圆圆心确定球心的位置,根据几何关系求解即可,属于三棱锥求外接球半径基础题目.10、B【解析】

该几何体由上下两部分组成的,上面是一个圆锥,下面是一个正方体,由体积公式直接求解.【详解】该几何体由上下两部分组成的,上面是一个圆锥,下面是一个正方体.∴该几何体的体积V64.故选:B.【点睛】本题考查了正方体与圆锥的组合体的三视图还原问题及体积计算公式,考查了推理能力与计算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据极限的运算法则,合理化简、运算,即可求解.【详解】由极限的运算,可得.故答案为:【点睛】本题主要考查了极限的运算法则的应用,其中解答熟记极限的运算法则,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.12、5【解析】

试题分析:由题意得,为等差数列时,一定为等差中项,即,为等比数列时,-2为等比中项,即,所以.考点:等差,等比数列的性质13、【解析】

设点的坐标,根据空间两点距离公式列方程求解.【详解】由题:设,点到点与点的距离相等,所以,,,解得:,所以点的坐标为.故答案为:【点睛】此题考查空间之间坐标系中两点的距离公式,根据公式列方程求解点的坐标,关键在于准确辨析正确计算.14、2【解析】

由向量的模长公式,计算得到答案.【详解】因为向量,所以,所以答案为.【点睛】本题考查向量的模长公式,属于简单题.15、【解析】

利用共线向量的坐标表示求出的值,可计算出向量的坐标,然后利用向量的模长公式可求出的值.【详解】,,且,,解得,,则,因此,,故答案为:.【点睛】本题考查利用共线向量的坐标表示求参数,同时也考查了向量模的坐标运算,考查计算能力,属于基础题.16、2【解析】

在正数数列an中,由点an,an-1在直线x-2y=0上,知a【详解】由题意,在正数数列an中,a1=1,且a可得an-2即an因为a1=1,所以数列所以Sn故答案为2n【点睛】本题主要考查了等比数列的定义,以及等比数列的前n项和公式的应用,同时涉及到数列与解析几何的综合运用,是一道好题.解题时要认真审题,仔细解答,注意等比数列的前n项和公式和通项公式的灵活运用,着重考查了推理与运算能力,属于中档试题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2).【解析】

(1)首先计算,再利用正弦定理计算得到答案.(2)中,由余弦定理得,作高,在直角三角形中利用三角函数得到高的大小.【详解】(1)在中,,.由正弦定理得:,即.(2)在中,由余弦定理得:,整理得,解得.过点D作于E,则DE为梯形ABCD的高.,,.在直角中,.即梯形ABCD的高为.【点睛】本题考查了正弦定理,余弦定理,意在考查学生的计算能力和解决问题的能力.18、(1);(2)m的取值集合或}(3)存在,【解析】

(1)利用奇函数的性质得到关于实数k的方程,解方程即可,注意验证所得的结果;(2)结合函数的单调性和函数的奇偶性脱去f的符号即可;(3)可得,即可得:即可.【详解】(1)由奇函数的性质可得:,解方程可得:.此时,满足,即为奇函数.的解析式为:;(2)函数的解析式为:,结合指数函数的性质可得:在区间内只有一个解.即:在区间内只有一个解.(i)当时,,符合题意.(ii)当时,只需且时,,此时,符合题意综上,m的取值集合或}(3)函数为奇函数关于对称又当且仅当时等号成立所以存在正整数n,使不得式对一切均成立.【点睛】本题考查了复合型指数函数综合,考查了学生综合分析,转化划归,数形结合,数学运算的能力,属于难题.19、(1)(2)(3)【解析】

(1)根据题干可推导得到,进而得到数列是以为首项,为公比的等比数列,由等比数列的通项公式得到结果;(2)由错位相减的方法得到结果;(3)根据第二问得到:,数列单调递增,由数列的单调性得到数列范围.【详解】(1)由,令,则,又,所以.当时,由可得,,即,所以是以为首项,为公比的等比数列,于是.(2)∴∴从而.(3)由(2)知,∴数列单调递增,∴,又,∴要恒成立,则,解得,又,故.【点睛】这个题目考查的是数列通项公式的求法及数列求和的常用方法;数列通项的求法中有常见的已知和的关系,求表达式,一般是写出做差得通项,但是这种方法需要检验n=1时通项公式是否适用;数列求和常用法有:错位相减,裂项求和,分组求和等。20、(I)或;(II).【解析】

(I)令,将有三个零点问题,转化为有三个不同的解的解决.画出和的图像,结合图像以及二次函数的判别式分类讨论,由此求得的值.(II)令,将恒成立不等式等价转化为恒成立,通过对分类讨论,求得的最大值,由此求得的取值范围.【详解】(I)由题意等价于有三个不同的解由,可得其函数图象如图所示:联立方程:,由可得结合图象可知.同理,由可得,因为,结合图象可知,综上可得:或.(Ⅱ)设,原不就价于,两边同乘得:,设,原题等价于的最大值.(1)当时,,易得,(2),,易得,所以的最大值为16,即,故.【点睛】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论