版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江西省赣县三中高一下数学期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.与圆关于直线对称的圆的方程为()A. B.C. D.2.已知,下列不等式中成立的是()A. B. C. D.3.如图是一三棱锥的三视图,则此三棱锥内切球的体积为()A. B. C. D.4.长方体,,,,则异面直线与所成角的余弦值为A. B. C. D.5.天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:907966191925271932812458569683431257393027556488730113537989据此估计,这三天中恰有两天下雨的概率近似为A.0.35 B.0.25 C.0.20 D.0.156.光线自点M(2,3)射到N(1,0)后被x轴反射,则反射光线所在的直线方程为()A. B.C. D.7.已知某线路公交车从6:30首发,每5分钟一班,甲、乙两同学都从起点站坐车去学校,若甲每天到起点站的时间是在6:30~7:00任意时刻随机到达,乙每天到起点站的时间是在6:45~7:15任意时刻随机到达,那么甲、乙两人搭乘同一辆公交车的概率是()A. B. C. D.8.在正方体中,异面直线与所成角的大小为()A. B. C. D.9.若非零实数满足,则下列不等式成立的是()A. B. C. D.10.若,则()A.0 B.-1 C.1或0 D.0或-1二、填空题:本大题共6小题,每小题5分,共30分。11.5人排成一行合影,甲和乙不相邻的排法有______种.(用数字回答)12.如图是一个算法的流程图,则输出的的值是________.13.设,则等于________.14.函数的部分图象如图所示,则函数的解析式为______.15.数列的前项和,则的通项公式_____.16.已知数列中,,,,则的值为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知点是函数的图象上一点,等比数列的前n项和为,数列的首项为c,且前n项和满足:当时,都有.(1)求c的值;(2)求证:为等差数列,并求出.(3)若数列前n项和为,是否存在实数m,使得对于任意的都有,若存在,求出m的取值范围,若不存在,说明理由.18.如图,已知四棱锥,底面是边长为的菱形,,侧面为正三角形,侧面底面,为侧棱的中点,为线段的中点(Ⅰ)求证:平面;(Ⅱ)求证:;(Ⅲ)求三棱锥的体积19.某校全体教师年龄的频率分布表如表1所示,其中男教师年龄的频率分布直方图如图2所示.已知该校年龄在岁以下的教师中,男女教师的人数相等.表1:(1)求图2中的值;(2)若按性别分层抽样,随机抽取16人参加技能比赛活动,求男女教师抽取的人数;(3)若从年龄在的教师中随机抽取2人,参加重阳节活动,求至少有1名女教师的概率.20.已知是等差数列,满足,,数列满足,,且是等比数列.(1)求数列和的通项公式;(2)求数列的前项和.21.从代号为A、B、C、D、E的5个人中任选2人(1)列出所有可能的结果;(2)若A、B、C三人为男性,D、E两人为女性,求选出的2人中不全为男性的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
设所求圆的圆心坐标为,列出方程组,求得圆心关于的对称点,即可求解所求圆的方程.【详解】由题意,圆的圆心坐标,设所求圆的圆心坐标为,则圆心关于的对称点,满足,解得,即所求圆的圆心坐标为,且半径与圆相等,所以所求圆的方程为,故选A.【点睛】本题主要考查了圆的方程的求解,其中解答中熟记圆的方程,以及准确求解点关于直线的对称点的坐标是解答的关键,着重考查了推理与运算能力,属于基础题.2、A【解析】
逐个选项进行判断即可.【详解】A选项,因为,所以.当时即不满足选项B,C,D.故选A.【点睛】此题考查不等式的基本性质,是基础题.3、D【解析】把此三棱锥嵌入长宽高分别为:的长方体中三棱锥即为所求的三棱锥其中,,,则,故可求得三棱锥各面面积分别为:,,,故表面积为三棱锥体积设内切球半径为,则故三棱锥内切球体积故选4、A【解析】
由题,找出,故(或其补角)为异面直线与所成角,然后解出答案即可.【详解】如图,连接,由,(或其补角)为异面直线与所成角,由已知可得,则..即异面直线与所成角的余弦值为.故选A.【点睛】本题考查了异面直线的夹角问题,找平行线,找出夹角是解题的关键,属于较为基础题.5、B【解析】解:由题意知模拟三天中恰有两天下雨的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示三天中恰有两天下雨的有:191、271、932、812、393,共5组随机数,∴所求概率为=0.1.故选B6、B【解析】试题分析:点关于轴的对称点,则反射光线即在直线上,由,∴,故选B.考点:直线方程的几种形式.7、D【解析】
根据甲、乙的到达时间,作出可行域,然后考虑甲、乙能同乘一辆公交车对应的区域面积,根据几何概型的概率求解方法即可求解出对应概率.【详解】设甲到起点站的时间为:时分,乙到起点站的时间为时分,所以,记事件为甲乙搭乘同一辆公交车,所以,作出可行域以及目标区域如图所示:由几何概型的概率计算可知:.故选:D.【点睛】本题考查利用线性规划的可行域解决几何概型中的面积模型问题,对于分析和转化的能力要求较高,注意几何概型中面积模型的概率计算方法,难度较难.8、C【解析】
连接、,可证四边形为平行四边形,得,得(或补角)就是异面直线与所成角,由正方体的性质即可得到答案.【详解】连接、,如下图:在正方体中,且;四边形为平行四边形,则;(或补角)就是异面直线与所成角;又在正方体中,,为等边三角形,,即异面直线与所成角的大小为;故答案选C【点睛】本题考查正方体中异面直线所成角的大小,属于基础题.9、C【解析】
对每一个不等式逐一分析判断得解.【详解】A,不一定小于0,所以该选项不一定成立;B,如果a<0,b<0时,不成立,所以该选项不一定成立;C,,所以,所以该不等式成立;D,不一定小于0,所以该选项不一定成立.故选:C【点睛】本题主要考查不等式性质和比较法比较实数的大小,意在考查学生对这些知识的理解掌握水平和分析推理能力.10、D【解析】
由二倍角公式可得,即,从而分情况求解.【详解】易得,或.
由得.
由,得.故选:D【点睛】本题考查二倍角公式的应用以及有关的二次齐次式子求值,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、72【解析】
先对其中3个人进行全排列有种,再对甲和乙进行插空有种,利用乘法原理得到排法总数为.【详解】先对其中3个人进行全排列有种,再对甲和乙进行插空有种,利用乘法原理得到排法总数为种,故答案为72【点睛】本题考查排列、组合计数原理的应用,考查基本运算能力.12、【解析】由程序框图,得运行过程如下:;,结束循环,即输出的的值是7.13、【解析】
首先根据题中求出的周期,然后利用周期性即可求出答案.【详解】由题知,有,故的周期为,故,又因为,有.故答案为:.【点睛】本题考查了三角函数的周期性,属于基础题.14、【解析】
根据三角函数图象依次求得的值.【详解】由图象可知,,所以,故,将点代入上式得,因为,所以.故.故答案为:【点睛】本小题主要考查根据三角函数的图象求三角函数的解析式,属于基础题.15、【解析】
根据和之间的关系,应用公式得出结果【详解】当时,;当时,;∴故答案为【点睛】本题考查了和之间的关系式,注意当和时要分开讨论,题中的数列非等差数列.本题属于基础题16、1275【解析】
根据递推关系式可求得,从而利用并项求和的方法将所求的和转化为,利用等差数列求和公式求得结果.【详解】由得:则,即本题正确结果:【点睛】本题考查并项求和法、等差数列求和公式的应用,关键是能够利用递推关系式得到数列相邻两项之间的关系,从而采用并项的方式来进行求解.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)1;(2)证明见解析,;(3)存在,.【解析】
(1)根据题意可得,再根据等比数列的性质即可求出c(2)根据题意可得,然后求出和(3)利用裂项求和法求出前n项和为,然后就可得出m的范围【详解】(1)因为所以,即即前n项和为,所以,因为是等比数列所以有,即解得(2)且数列构成一个首项为1,公差为1的等差数列所以,即
所以(3)因为对于任意的都有所以【点睛】常见的数列求和方法有公式法即等差等比数列的求和公式、分组求和法、裂项相消法、错位相减法.18、(Ⅰ)见解析(Ⅱ)见解析(Ⅲ)【解析】
(Ⅰ)连接,交于点;根据三角形中位线可证得;由线面平行判定定理可证得结论;(Ⅱ)由等腰三角形三线合一可知;由面面垂直的性质可知平面;根据线面垂直性质可证得结论;(Ⅲ)利用体积桥的方式将所求三棱锥体积转化为;根据已知长度和角度关系分别求得四边形面积和高,代入得到结果.【详解】(Ⅰ)证明:连接,交于点四边形为菱形为中点又为中点平面,平面平面(Ⅱ)为正三角形,为中点平面平面,平面平面,平面平面,又平面(Ⅲ)为中点又,,由(Ⅱ)知,【点睛】本题考查立体几何中线面平行、线线垂直关系的证明、三棱锥体积的求解问题;涉及到线面平行判定定理、面面垂直性质定理和判定定理的应用、体积桥的方式求解三棱锥体积等知识,属于常考题型.19、(1);(2)见解析;(3)【解析】
由男教师年龄的频率分布直方图总面积为1求得答案;由男教师年龄在的频率可计算出男教师人数,从而女教师人数也可求得,于是通过分层抽样的比例关系即可得到答案;年龄在的教师中,男教师为(人),则女教师为1人,从而可计算出基本事件的概率.【详解】(1)由男教师年龄的频率分布直方图得解得(2)该校年龄在岁以下的男女教师人数相等,且共14人,年龄在岁以下的男教师共7人由(1)知,男教师年龄在的频率为男教师共有(人),女教师共有(人)按性别分层抽样,随机抽取16人参加技能比赛活动,则男教师抽取的人数为(人),女教师抽取的人数为人(3)年龄在的教师中,男教师为(人),则女教师为1人从年龄在的教师中随机抽取2人,共有10种可能情形其中至少有1名女教师的有4种情形故所求概率为【点睛】本题主要考查频率分布直方图,分层抽样,古典概率的计算,意在考查学生的计算能力和分析能力,难度不大.20、(1),;(2)【解析】试题分析:(1)利用等差数列,等比数列的通项公式先求得公差和公比,即得到结论;(2)利用分组求和法,由等差数列及等比数列的前n项和公式即可求得数列前n项和.试题解析:(Ⅰ)设等差数列{an}的公差为d,由题意得d===1.∴an=a1+(n﹣1)d=1n设等比数列{bn﹣an}的公比为q,则q1===8,∴q=2,∴bn﹣an=(b1﹣a1)qn﹣1=2n﹣1,∴bn=1n+2n﹣1(Ⅱ)由(Ⅰ)知bn=1n+2n﹣1,∵数列{1n}的前n项和为n(n+1),数列{2n﹣1}的前n项和为1×=2n﹣1,∴数列{bn}的前n项和为;考点:1.等差数列性质的综合应用;2.等比数列性质的综合应用;1.数列求和.21、(1)见解析(2)0.7【解析】
(1)从代号为、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 店面租房合同(2篇)
- 爆破工程合同范本示例
- 绿色水稻购销协议
- 云计算配件销售协议
- 二零二四年度软件开发合同标的及服务内容
- 核桃果实采购协议格式
- 可靠活动服务合同
- 会议服务合同协议书的争议解决
- 招标货物运输合作项目招标
- 挖掘机采购合同文本
- 后抛实心球教案
- 分布式能源站工程燃气轮机发电机组初步设计原则总平面布置方案
- 材料封样清单_土建_安装
- 工程机械租赁服务方案及保障措施 (1)
- 医疗污水处理登记表
- WordA4信纸(A4横条直接打印版)
- 曲炜面授打分法断旺衰(四柱)资料讲解
- 低压无功功率补偿装置标准介绍.ppt
- 电梯安全评估方法
- IlyaEfimovAcousticGuitar中文使用手册
- 野外垂直水平位移观测墩施工技术措施-改
评论
0/150
提交评论