




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏常熟中学2025届高一下数学期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量,则与的夹角为()A. B. C. D.2.己知ΔABC中,角A,B,C所对的边分別是a,b,c.若A=45°,B=30°,a=2,则bA.3-1 B.1 C.2 D.3.点直线与线段相交,则实数的取值范围是()A. B.或C. D.或4.过点(1,0)且与直线垂直的直线方程是()A. B. C. D.5.为了得到函数的图象,只需把函数的图象上的所有的点()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位6.总体由编号为01,02,…,60的60个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第8列和第9列数字开始由左至右选取两个数字,则选出的第5个个体的编号为()5044664429670658036980342718836146422391674325745883110330208353122847736305A.42 B.36 C.22 D.147.若,且,则“”是“函数有零点”的(
)A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.若、、,且,则下列不等式中一定成立的是()A. B. C. D.9.若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A.0.3 B.0.4 C.0.6 D.0.710.从甲、乙、丙三人中,任选两名代表,甲被选中的概率为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,是与的等比中项,则最小值为_________.12.已知函数f(x)的图象恒过定点P,则点P的坐标是____________.13.已知与的夹角为求=_____.14.直线过点且倾斜角为,直线过点且与垂直,则与的交点坐标为____15.若当时,不等式恒成立,则实数a的取值范围是_____.16.已知一圆台的底面圆的半径分别为2和5,母线长为5,则圆台的高为_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四边形中,,,,.(1)若,求;(2)求四边形面积的最大值.18.如图,在四棱锥中,底面,底面为矩形,为的中点,且,,.(1)求证:平面;(2)若点为线段上一点,且,求四棱锥的体积.19.如图已知平面,,,,,,点,分别为,的中点.(1)求证://平面;(2)求直线与平面所成角的大小.20.在中,角对应的边分别是,且.(1)求的周长;(2)求的值.21.已知.(1)求;(2)求向量与的夹角的余弦值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
根据题意,由向量数量积的计算公式可得cosθ的值,据此分析可得答案.【详解】设与的夹角为θ,由、的坐标可得||=5,||=3,•5×0+5×(﹣3)=﹣15,故,所以.故选D【点睛】本题考查向量数量积的坐标计算,涉及向量夹角的计算,属于基础题.2、B【解析】
由正弦定理可得.【详解】∵asinA=故选B.【点睛】本题考查正弦定理,解题时直接应用正弦定理可解题,本题属于基础题.3、C【解析】
直线经过定点,斜率为,数形结合利用直线的斜率公式,求得实数的取值范围,得到答案.【详解】如图所示,直线经过定点,斜率为,当直线经过点时,则,当直线经过点时,则,所以实数的取值范围,故选C.【点睛】本题主要考查了直线过定点问题,以及直线的斜率公式的应用,着重考查了数形结合法,以及推理与运算能力,属于基础题.4、D【解析】
设出直线方程,代入点求得直线方程.【详解】依题意设所求直线方程为,代入点得,故所求直线方程为,故选D.【点睛】本小题主要考查两条直线垂直的知识,考查直线方程的求法,属于基础题.5、D【解析】
把系数2提取出来,即即可得结论.【详解】,因此要把图象向右平移个单位.故选D.【点睛】本题考查三角函数的图象平移变换.要注意平移变换是加减平移单位,即向右平移个单位得图象的解析式为而不是.6、C【解析】
通过随机数表的相关运算即可得到答案.【详解】随机数表第1行的第8列和第9列数字为42,由左至右选取两个数字依次为42,36,03,14,22,选出的第5个个体的编号为22,故选C.【点睛】本题主要考查随机数法,按照规则进行即可,难度较小.7、A【解析】
结合函数零点的定义,利用充分条件和必要条件的定义进行判断,即可得出答案.【详解】由题意,当时,,函数与有交点,故函数有零点;当有零点时,不一定取,只要满足都符合题意.所以“”是“函数有零点”的充分不必要条件.故答案为:A【点睛】本题主要考查了函数零点的概念,以及对数函数的图象与性质的应用,其中解答中熟记函数零点的定义,以及对数函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题.8、D【解析】
对,利用分析法证明;对,不式等两边同时乘以一个正数,不等式的方向不变,乘以0再根据不等式是否取等进行考虑;对,考虑的情况;对,利用同向不等式的可乘性.【详解】对,,因为大小无法确定,故不一定成立;对,当时,才能成立,故也不一定成立;对,当时不成立,故也不一定成立;对,,故一定成立.故选:D.【点睛】本题考查不等式性质的运用,考查不等式在特殊情况下能否成立的问题,考查思维的严谨性.9、B【解析】
分析:由公式计算可得详解:设事件A为只用现金支付,事件B为只用非现金支付,则因为所以,故选B.点睛:本题主要考查事件的基本关系和概率的计算,属于基础题.10、D【解析】
采用列举法写出总事件,再结合古典概型公式求解即可【详解】被选出的情况具体有:甲乙、甲丙、乙丙,甲被选中有两种,则故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】
根据等比中项定义得出的关系,然后用“1”的代换转化为可用基本不等式求最小值.【详解】由题意,所以,所以,当且仅当,即时等号成立.所以最小值为1.故答案为:1.【点睛】本题考查等比中项的定义,考查用基本不等式求最值.解题关键是用“1”的代换找到定值,从而可用基本不等式求最值.12、(2,4)【解析】
令x-1=1,得到x=2,把x=2代入函数求出定点的纵坐标得解.【详解】令x-1=1,得到x=2,把x=2代入函数得,所以定点P的坐标为(2,4).故答案为:(2,4)【点睛】本题主要考查对数函数的定点问题,意在考查学生对该知识的理解掌握水平,属于基础题.13、【解析】
由题意可得:,结合向量的运算法则和向量模的计算公式可得的值.【详解】由题意可得:,则:.【点睛】本题主要考查向量模的求解,向量的运算法则等知识,意在考查学生的转化能力和计算求解能力.14、【解析】
通过题意,求出两直线方程,联立方程即可得到交点坐标.【详解】根据题意可知,因此直线为:,由于直线与垂直,故,所以,所以直线为:,联立两直线方程,可得交点.【点睛】本题主要考查直线方程的相关计算,难度不大.15、【解析】
用换元法把不等式转化为二次不等式.然后用分离参数法转化为求函数最值.【详解】设,是增函数,当时,,不等式化为,即,不等式在上恒成立,时,显然成立,,对上恒成立,由对勾函数性质知在是减函数,时,,∴,即.综上,.故答案为:.【点睛】本题考查不等式恒成立问题,解题方法是转化与化归,首先用换元法化指数型不等式为一元二次不等式,再用分离参数法转化为求函数最值.16、4【解析】
根据圆台轴截面等腰梯形计算.【详解】,设圆高为,由圆台轴截面是等腰梯形得:,即,,故答案为:4.【点睛】本题考查求圆台的高,解题关键是掌握圆台的性质,圆台轴截面是等腰梯形.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)直接利用余弦定理,即可得到本题答案;(2)由四边形ABCD的面积=,得四边形ABCD的面积,求S的最大值即可得到本题答案.【详解】(1)当时,在中,由余弦定理得,设(),则,即,解得,所以;(2)的面积为,在中,由余弦定理得,所以,的面积为,所以,四边形的面积为,因为,所以当时,四边形的面积最大,最大值为.【点睛】本题主要考查利用余弦定理、面积公式及三角函数的性质解决实际问题.18、(1)见解析(2)6【解析】
(1)连接交于点,得出点为的中点,利用中位线的性质得出,再利用直线与平面平行的判定定理可得出平面;(2)过作交于,由平面,得出平面,可而出,结合,可证明出平面,可得出,并计算出,利用平行线的性质求出的长,再利用锥体的体积公式可计算出四棱锥的体积.【详解】(1)连接交于,连接.四边形为矩形,∴为中点.又为中点,∴.又平面,平面,∴平面;(2)过作交于.∵平面,∴平面.又平面,∴.∵,,,平面,∴平面.连接,则,又是矩形,易证,而,,得,由得,∴.又矩形的面积为8,∴.【点睛】本题考查直线与平面平行的证明,以及锥体体积的计算,直线与平面平行的证明,常用以下三种方法进行证明:(1)中位线平行;(2)平行四边形对边平行;(3)构造面面平行来证明线面平行.一般遇到中点找中点,根据已知条件类型选择合适的方法证明.19、(1)见证明;(2)【解析】
(1)要证线面平行即证线线平行,本题连接A1B,(2)取中点,连接证明平面,再求出,得到.【详解】(1)如图,连接,在中,因为和分别是和的中点,所以.又因为平面,所以平面;取中点和中点,连接,,.因为和分别为和,所以,,故且,所以,且.又因为平面,所以平面,从而为直线与平面所成的角.在中,可得,所以.因为,,所以,,,所以,,又由,有.在中,可得;在中,,因此.所以直线与平面所成角为.【点睛】求线面角一般有两个方法:几何法做出线上一点到平面的高,求出高;或利用等体积法求高向量法.20、(1)(2)【解析】
(1)由余弦定理求得,从而得周长;(2)由余弦定理求得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 行政前台客户满意度提升计划
- 2025年职业道德与职场素养心得体会
- 2025少先队网络安全教育计划
- 初二地理复习互动学习活动计划
- 深圳老年大学招生简章20xx年
- 正规借名购房合同协议
- 哈密瓜订单合同协议
- 商家快递费用合同协议
- 楼盘广告机采购合同协议
- 哈尔滨劳务分包合同协议
- GB/T 3785.3-2018电声学声级计第3部分:周期试验
- GB/T 28462-2012机织起绒合成革基布
- 接触网工复习题库及答案
- 儿童泌尿道感染(课堂PPT)
- 全国压力容器设计单位名录
- 特变电工-财务报表分析课件
- 人民医院人才队伍建设规划人才队伍建设五年规划
- 一年级语文下册课件-21 小壁虎借尾巴24-部编版(15张PPT)
- 患者随访率低原因分析以及对策
- 计量认证实验室程序文件(全套)
- DGC型瓦斯含量直接测定装置使用说明书
评论
0/150
提交评论