版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省常熟市2025届高一数学第二学期期末监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知两点,,直线过点且与线段相交,则直线的斜率的取值范围是()A. B.C. D.或2.函数的零点有两个,求实数的取值范围()A. B.或 C.或 D.3.已知数列和数列都是无穷数列,若区间满足下列条件:①;②;则称数列和数列可构成“区间套”,则下列可以构成“区间套”的数列是()A., B.,C., D.,4.圆的半径为()A.1 B.2 C.3 D.45.不等式的解集为A. B. C. D.6.将函数的图象沿轴向左平移个单位,得到一个偶函数的图象,则的一个可能取值为()A. B. C. D.7.如图,在等腰梯形中,,于点,则()A. B.C. D.8.如果执行右面的框图,输入,则输出的数等于()A. B. C. D.9.在钝角三角形ABC中,若B=45°,a=2,则边长cA.(1,2) B.(0,1)∪(10.已知直线与平行,则等于()A.或 B.或 C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知中,的对边分别为,若,则的周长的取值范围是__________.12.已知x,y=R+,且满足x2y6,若xy的最大值与最小值分别为M和m,M+m=_____.13.在中,,则______.14.函数的单调递减区间是______.15.已知,,,若,则__________.16.已知为钝角,且,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在△ABC中,AC=4,,.(Ⅰ)求的大小;(Ⅱ)若D为BC边上一点,,求DC的长度.18.如图为函数f(x)=Asin(Ⅰ)求函数f(x)=Asin(Ⅱ)若x∈0,π2时,函数y=19.的内角,,的对边分别为,,,已知.(1)求角;(2)若,求面积的最大值.20.已知函数(1)求函数的单调递减区间;(2)若将函数图象上所有点的横坐标缩短为原来的倍,纵坐标不变,然后再向右平移()个单位长度,所得函数的图象关于轴对称.求的最小值21.已知函数(1)求的最值、单调递减区间;(2)先把的图象向左平移个单位,再把图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到函数的图象,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
作出示意图,再结合两点间的斜率公式,即可求得答案.【详解】,,又直线过点且与线段相交,作图如下:则由图可知,直线的斜率的取值范围是:或.故选:D【点睛】本题借直线与线段的交点问题,考查两点间的斜率公式,考查理解辨析能力,属于中档题.2、B【解析】
由题意可得,的图象(红色部分)和直线有2个交点,数形结合求得的范围.【详解】由题意可得的图象(红色部分)和直线有2个交点,如图所示:故有或,故选:B.【点睛】已知函数零点(方程根)的个数,求参数取值范围的三种常用的方法:(1)直接法,直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法,先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法,先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.一是转化为两个函数的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为的图象的交点个数问题.3、C【解析】
直接利用已知条件,判断选项是否满足两个条件即可.【详解】由题意,对于A:,,∵,∴不成立,所以A不正确;对于B:由,,得不成立,所以B不正确;对于C:,∵,∴成立,并且也成立,所以C正确;对于D:由,,得,∴不成立,所以D不正确;故选:C.【点睛】本题考查新定义的理解和运用,考查数列的极限的求法,考查分析问题解决问题的能力及运算能力,属于中档题.4、A【解析】
将圆的一般方程化为标准方程,确定所求.【详解】因为圆,所以,所以,故选A.【点睛】本题考查圆的标准方程与一般方程互化,圆的标准方程通过展开化为一般方程,圆的一般方程通过配方化为标准方程,属于简单题.5、D【解析】
把不等式化为,即可求解不等式的解集,得到答案.【详解】由题意,不等式可化为,解得或,即不等式的解集为,故选D.【点睛】本题主要考查了一元二次不等式的求解,其中解答中熟记一元二次不等式的解法是解答的关键,着重考查了推理与运算能力,属于基础题.6、B【解析】
利用函数y=Asin(ωx+)的图象变换可得函数平移后的解析式,利用其为偶函数即可求得答案.【详解】令y=f(x)=sin(2x+),则f(x)=sin[2(x)+]=sin(2x),∵f(x)为偶函数,∴=kπ,∴=kπ,k∈Z,∴当k=0时,.故的一个可能的值为.故选:B.【点睛】本题考查函数y=Asin(ωx+)的图象变换,考查三角函数的奇偶性的应用,属于中档题.7、A【解析】
根据等腰三角形的性质可得是的中点,由平面向量的加法运算法则结合向量平行的性质可得结果.【详解】因为,所以是的中点,可得,故选.【点睛】本题主要考查向量的几何运算以及向量平行的性质,属于简单题.向量的运算有两种方法,一是几何运算往往结合平面几何知识和三角函数知识解答,运算法则是:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和);二是坐标运算:建立坐标系转化为解析几何问题解答(求最值与范围问题,往往利用坐标运算比较简单)8、D【解析】试题分析:当时,该程序框图所表示的算法功能为:,故选D.考点:程序框图.9、D【解析】试题分析:解法一:,由三角形正弦定理诱导公式有,利用三角恒等公式能够得到,当A为锐角时,0∘<A<45∘,,即,当A为钝角时,90∘<A<135∘,,综上所述,;解法二:利用图形,如图,,,当点A(D)在线段BE上时(不含端点B,E),为钝角,此时;当点A在线段EF上时,为锐角三角形或直角三角形;当点A在射线FG(不含端点F)上时,为钝角,此时,所以c的取值范围为.考点:解三角形.【思路点睛】解三角形需要灵活运用正余弦定理以及三角形的恒等变形,在解答本题时,利用三角形内角和,将两角化作一角,再利用正弦定理即可列出边长c与角A的关系式,根据角A的取值范围即可求出c的范围,本题亦可利用物理学中力的合成,合力的大小来确定c的大小,正如解法二所述.10、C【解析】
由题意可知且,解得.故选.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】中,由余弦定理可得,∵,∴,化简可得.∵,∴,解得(当且仅当时,取等号).故.再由任意两边之和大于第三边可得,故有,故的周长的取值范围是,故答案为.点睛:由余弦定理求得,代入已知等式可得,利用基本不等式求得,故.再由三角形任意两边之和大于第三边求得,由此求得△ABC的周长的取值范围.12、【解析】
设,则,可得,然后利用基本不等式得到关于的一元二次方程解方程可得的最大值和最小值,进而得到结论.【详解】∵x,y=R+,设,则,∴∴12t=(2t+2)x+(4t+1)y,∴18t≥(t+1)(4t+1)=4t2+5t+1,∴4t2﹣13t+1≤0,∴,∵xy的最大值与最小值分别为M和m,∴M,m,∴M+m.【点睛】本题考查了基本不等式的应用和一元二次不等式的解法,考查了转化思想和运算推理能力,属于中档题.13、【解析】
由已知求得,进一步求得,即可求出.【详解】由,得,即,,则,,,则.【点睛】本题主要考查应用两角和的正切公式作三角函数的恒等变换与化简求值.14、【解析】
求出函数的定义域,结合复合函数求单调性的方法求解即可.【详解】由,解得令,则函数在区间上单调递减,在区间上单调递增函数在定义域内单调递增函数的单调递减区间是故答案为:【点睛】本题主要考查了复合函数的单调性,属于中档题.15、-3【解析】由可知,解得,16、.【解析】
利用同角三角函数的基本关系即可求解.【详解】由为钝角,且,所以,所以.故答案为:【点睛】本题考查了同角三角函数的基本关系,同时考查了象限角的三角函数的符号,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)或【解析】
(Ⅰ)由正弦定理得到,在结合三角形内角的性质即可的大小;(Ⅱ)由(Ⅰ)可得的大小,在中,利用余弦定理即可求出边的长.【详解】(Ⅰ)在中,由正弦定理得,所以.因为,所以,所以.(Ⅱ)在中,.在中,由余弦定理,得,即,解得或.经检验,都符合题意.【点睛】本题主要考查正弦定理与余弦定理,属于基础题.18、(Ⅰ)f(x)=23【解析】
(Ⅰ)根据三角函数的图像,得到周期,求出ω=2,再由函数零点,得到2×π6+φ=2kπ,k∈Z(Ⅱ)先由题意得到f(x)∈-1,233,再将函数【详解】(Ⅰ)由图象知,T∴T=π,ω=2∵2×π6+φ=2kπ,k∈Z,及而f(0)=Asin(-π3故f(x)=2(Ⅱ)∵x∈∴2x-π3∈又函数y=f(x)2-2f(x)-m∵f(x)∈∴f(x)-1因此,实数m的取值范围是-1,3.【点睛】本题主要考查由三角函数的部分图像求解析式的问题,以及由函数的零点求参数的问题,熟记三角函数的图像与性质即可,属于常考题型.19、(1);(2).【解析】
(1)由边角互化整理后,即可求得角C;(2)由余弦定理,结合均值不等式,求解的最大值,代入面积即可.【详解】(1)由正弦定理得,,,,因为,所以,所以,即,所以.(2)由余弦定理可得:即,所以,当且仅当时,取得最大值为.【点睛】本题考查解三角形中的边角互化,以及利用余弦定理及均值不等式求三角形面积的最值问题,属综合中档题.20、(1),,.(2).【解析】
(1)根据诱导公式,二倍角公式,辅助角公式把化为的形式,再根据复合函数单调性求解;(2)先根据变换关系得到函数解析式,所得函数的图象关于轴对称,则时,.【详解】(1)当即时,函数单调递减,所以函数的单调递减区间为.(2)将函数图象上所有点的横坐标缩短为原来的倍,纵坐标不变,然后再向右平移()个单位长度,所得函数为,若图象关于轴对称,则,即,解得,又,则当时,有最小值.【点睛】本题主要考查三角函数的性质和图像的变换.关键在于化为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度班组承包合同履行期限与合同解除3篇
- 2025年度池塘生态渔业项目租赁合同3篇
- 二零二五版幼儿园连锁经营承包管理服务合同3篇
- 二零二五年股权融资合同聚焦新能源领域3篇
- 二零二五年度大渡口环保吸污车租赁与市场推广服务协议3篇
- 2025年数据中心物业承包经营合同模板3篇
- 2024版商用建筑项目合作合同精简版版B版
- 个性化2024劳务派遣服务协议版B版
- 二零二五版旅游项目投资担保合同3篇
- 2025年房屋租赁续租协议2篇
- 二年级下册加减混合竖式练习360题附答案
- GB/T 21709.5-2008针灸技术操作规范第5部分:拔罐
- 大三上-诊断学复习重点
- 应收账款的管理培训课件
- 2021年道路交通安全法期末考试试题含答案
- 股东变更情况报告表
- 自带药物治疗告知书
- 房产中介门店6S管理规范
- 吞咽解剖和生理研究
- TSG11-2020 锅炉安全技术规程
- 异地就医备案个人承诺书
评论
0/150
提交评论