版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
果洛市重点中学2025届高一数学第二学期期末考试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在等差数列中,,则()A.5 B.8 C.10 D.142.已知函数在处取得极小值,则的最小值为()A.4 B.5 C.9 D.103.已知向量,,若,则的值为()A. B.1 C. D.4.在中,,点是内(包括边界)的一动点,且,则的最大值是()A. B. C. D.5.如图,在正方体中,已知,分别为棱,的中点,则异面直线与所成的角等于()A.90° B.60°C.45° D.30°6.某兴趣小组合作制作了一个手工制品,并将其绘制成如图所示的三视图,其中侧视图中的圆的半径为3,则制作该手工制品表面积为()A. B. C. D.7.设等差数列an的前n项和为Sn,若a1>0,A.S10 B.S11 C.S8.若cosα=13A.13 B.-13 C.9.已知a,b,,且,,则()A. B. C. D.10.若,且,则下列不等式中正确的是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.382与1337的最大公约数是__________.12.已知向量,,则的最大值为_______.13.函数的最大值为.14.在等比数列中,,公比,若,则达到最大时n的值为____________.15.设是公差不为0的等差数列,且成等比数列,则的前10项和________.16.已知变量x,y线性相关,其一组数据如下表所示.若根据这组数据求得y关于x的线性回归方程为,则______.x1245y5.49.610.614.4三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列中,,前项的和为,且满足数列是公差为的等差数列.(1)求数列的通项公式;(2)若恒成立,求的取值范围.18.已知等差数列满足,.(1)求的通项公式;(2)设等比数列满足.若,求的值.19.如图,在三棱柱中,为正三角形,为的中点,,,.(1)证明:平;(2)证明:平面平面.20.已知圆,点,直线.(1)求与直线l垂直,且与圆C相切的直线方程;(2)在x轴上是否存在定点B(不同于点A),使得对于圆C上任一点P,为常数?若存在,试求这个常数值及所有满足条件的点B的坐标;若不存在,请说明理由.21.已知数列的前项和为,满足,,数列满足,,且.(1)求数列的通项公式;(2)求证:数列是等差数列,求数列的通项公式;(3)若,数列的前项和为,对任意的,都有,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】试题分析:设等差数列的公差为,由题设知,,所以,所以,故选B.考点:等差数列通项公式.2、C【解析】由,得,则,所以,所以,当且仅当,即时,等号成立,故选C.3、B【解析】
直接利用向量的数量积列出方程求解即可.【详解】向量,,若,可得2﹣2=0,解得=1,故选B.【点睛】本题考查向量的数量积的应用,考查计算能力,属于基础题.4、B【解析】
根据分析得出点的轨迹为线段,结合图形即可得到的最大值.【详解】如图:取,,,点是内(包括边界)的一动点,且,根据平行四边形法则,点的轨迹为线段,则的最大值是,在中,,,,,故选:B【点睛】此题考查利用向量方法解决平面几何中的线段长度最值问题,数形结合处理可以避免纯粹的计算,降低难度.5、B【解析】
连接,可证是异面直线与所成的角或其补角,求出此角即可.【详解】连接,因为,分别为棱,的中点,所以,又正方体中,所以是异面直线与所成的角或其补角,是等边三角形,=60°.所以异面直线与所成的角为60°.故选:B.【点睛】本题考查异面直线所成的角,解题时需根据定义作出异面直线所成的角,同时给出证明,然后在三角形中计算.6、D【解析】
由三视图可知,得到该几何体是由两个圆锥组成的组合体,根据几何体的表面积公式,即可求解.【详解】由三视图可知,该几何体是由两个圆锥组成的组合体,其中圆锥的底面半径为3,高为4,所以几何体的表面为.选D.【点睛】本题考查了几何体的三视图及表面积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线,求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解.7、C【解析】分析:利用等差数列的通项公式,化简求得a20+a详解:在等差数列an中,a则3(a1+7d)=5(a1所以a20又由a1>0,所以a20>0,a21<0点睛:本题考查了等差数列的通项公式,及等差数列的前n项和Sn的性质,其中解答中根据等差数列的通项公式,化简求得a20+8、D【解析】
利用二倍角余弦公式cos2α=2【详解】由二倍角余弦公式可得cos2α=2【点睛】本题考查二倍角余弦公式的应用,着重考查学生对二倍角公式熟记和掌握情况,属于基础题.9、A【解析】
利用不等式的基本性质以及特殊值法,即可得到本题答案.【详解】由不等式的基本性质有,,故A正确,B不正确;当时,,但,故C、D不正确.故选:A【点睛】本题主要考查不等式的基本性质,属基础题.10、D【解析】
利用不等式的性质依次对选项进行判断。【详解】对于A,当,且异号时,,故A不正确;对于B,当,且都为负数时,,故B不正确;对于C,取,则,故不正确;对于D,由于,,则,所以,即,故D正确;故答案选D【点睛】本题主要考查不等式的基本性质,在解决此类选择题时,可以用特殊值法,依次对选项进行排除。二、填空题:本大题共6小题,每小题5分,共30分。11、191【解析】
利用辗转相除法,求382与1337的最大公约数.【详解】因为,,所以382与1337的最大公约数为191,故填:.【点睛】本题考查利用辗转相除法求两个正整数的最大公因数,属于容易题.12、.【解析】
计算出,利用辅助角公式进行化简,并求出的最大值,可得出的最大值.【详解】,,,所以,,当且仅当,即当,等号成立,因此,的最大值为,故答案为.【点睛】本题考查平面向量模的最值的计算,涉及平面向量数量积的坐标运算以及三角恒等变换思想的应用,考查分析问题和解决问题的能力,属于中等题.13、【解析】略14、7【解析】
利用,得的值【详解】因为,,所以为7.故答案为:7【点睛】本题考查等比数列的项的性质及单调性,找到与1的分界是关键,是基础题15、【解析】
利用等差数列的通项公式和等比数列的性质求出公差,由此能求出【详解】因为是公差不为0的等差数列,且成等比数列所以,即解得或(舍)所以故答案为:【点睛】本题考查等差数列前10项和的求法,解题时要认真审题,注意等比数列的性质合理运用.16、4.3【解析】
由所给数据求出,根据回归直线过中心点可求解.【详解】由表格得到,,将样本中心代入线性回归方程得.故答案为:4.3【点睛】本题考查线性回归直线方程,掌握回归直线的性质是解题关键,即回归直线必过中心点.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)根据题意求出数列的通项公式,可解出,从而得出数列的通项公式;(2)将数列的通项公式裂项,利用裂项法求出,由得出,然后利用定义法判断出数列的单调性,求出数列的最小项,从而得出实数的取值范围.【详解】(1)因为,所以,又因为数列是公差为的等差数列,所以,即;(2)因为,所以.于是,即为,整理可得.设,则.令,解得,,所以,,故数列的最大项的值为,故,因此,实数的取值范围是.【点睛】本题考查数列通项公式的求解,同时也考查了裂项求和法以及数列不等式恒成立求参数,解题时利用参变量分离法转化为新数列的最值问题求解,同时也考查利用定义法判断数列的单调性,考查分析问题和解决问题的能力,属于中等题.18、(1);(2)63【解析】
(1)求出公差和首项,可得通项公式;(2)由得公比,再得,结合通项公式求得.【详解】(1)由题意等差数列的公差,,,∴;(2)由(1),∴,,∴,.【点睛】本题考查等差数列与等比数列的通项公式,掌握基本量法是解题基础.19、(1)证明见解析;(2)证明见解析.【解析】
(1)连结交于,连结,先证明,再证明平;(2)取的中点为,连结,,,先证明平面,再证明平面平面.【详解】证明:(1)连结交于,连结,由于棱柱的侧面是平行四边形,故为的中点,又为的中点,故是的中位线,所以,又平面,平面,所以平面.(2)取的中点为,连结,,,在中,,由,知为正三角形,故,又,,故,所以,又,所以平面,又平面,所以平面平面.【点睛】本题主要考查空间位置关系的证明,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于基础题.20、(1)或(2)存在,,【解析】
(1)先设与直线l垂直的直线方程为,再结合点到直线的距离公式求解即可;(2)先设存在,利用都有为常数及在圆上,列出等式,然后利用恒成立求解即可.【详解】解:(1)由直线.则可设与直线l垂直的直线方程为,又该直线与圆相切,则,则,故所求直线方程为或;(2)假设存在定点使得对于圆C上任一点P,为常数,则,所以,将代入上式化简整理得:对恒成立,所以,解得或,又,即,所以存在定点使得对于圆C上任一点P,为常数.【点睛】本题考查了点到直线的距离公式,重点考查了点与圆的位置关系,属中档题.21、(1);(2)证明见解析,;(3)或.【解析】
(1)运用数列的递推式以及数列的和与通项的关系可得,再由等比数列的定义、通项公式可得结果;(2)对等式两边除以,结合等差数列的定义和通项公式,可得所求;(3)求得,由数列的错位相减法求和,可得,化简,即,对任意的成立,运用数列的单调性可得最大值,解不等式可得所求范围.【详解】(1),可得,即;时,,又,相减可得,即,则;(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 管理工作心得体会感悟(6篇)
- 诚信国旗下讲话稿范本7篇
- 无害化处理废弃电子线路板项目可行性研究报告
- 开展校园观光车调查问卷
- 商品房服务合同
- 上海工程建设合同范本
- 高中班主任教育工作期末个人总结范文5篇
- 商业综合体租赁托管
- 团队合作分红合同
- 知识产权代理争议调解协议
- 经导管主动脉瓣置换术(TAVR)患者的麻醉管理
- 运筹学智慧树知到答案2024年哈尔滨工程大学
- 行政执法证专业法律知识考试题库含答案(公路路政)
- 《人行自动门安全要求》标准
- 广铁集团校园招聘机考题库
- 第一章、总体概述:施工组织总体设想、工程概述、方案针对性及施工标段划分
- 2024-2030年中国语言服务行业发展规划与未来前景展望研究报告
- 2024-2030年白玉蜗牛养殖行业市场发展现状及发展前景与投资机会研究报告
- HGT 2902-2024《模塑用聚四氟乙烯树脂》
- 2024 年上海市普通高中学业水平等级性考试 物理 试卷
- 国家开放大学专科《法理学》(第三版教材)形成性考核试题及答案
评论
0/150
提交评论