![2025届河南省信阳市达权店高级中学高一下数学期末学业质量监测试题含解析_第1页](http://file4.renrendoc.com/view5/M00/0C/13/wKhkGGZvIMKAENfEAAHnuckqrGo366.jpg)
![2025届河南省信阳市达权店高级中学高一下数学期末学业质量监测试题含解析_第2页](http://file4.renrendoc.com/view5/M00/0C/13/wKhkGGZvIMKAENfEAAHnuckqrGo3662.jpg)
![2025届河南省信阳市达权店高级中学高一下数学期末学业质量监测试题含解析_第3页](http://file4.renrendoc.com/view5/M00/0C/13/wKhkGGZvIMKAENfEAAHnuckqrGo3663.jpg)
![2025届河南省信阳市达权店高级中学高一下数学期末学业质量监测试题含解析_第4页](http://file4.renrendoc.com/view5/M00/0C/13/wKhkGGZvIMKAENfEAAHnuckqrGo3664.jpg)
![2025届河南省信阳市达权店高级中学高一下数学期末学业质量监测试题含解析_第5页](http://file4.renrendoc.com/view5/M00/0C/13/wKhkGGZvIMKAENfEAAHnuckqrGo3665.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河南省信阳市达权店高级中学高一下数学期末学业质量监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线的方程为,则该直线的倾斜角为()A. B. C. D.2.已知函数,则下列命题正确的是()①的最大值为2;②的图象关于对称;③在区间上单调递增;④若实数m使得方程在上恰好有三个实数解,,,则;A.①② B.①②③ C.①③④ D.①②③④3.将八进制数化成十进制数,其结果为()A. B. C. D.4.已知平面向量,,若,则实数()A.-2 B.-1 C. D.25.甲、乙两名运动员分别进行了5次射击训练,成绩如下:甲:7,7,8,8,1;乙:8,9,9,9,1.若甲、乙两名运动员的平均成绩分别用,表示,方差分别用,表示,则()A., B.,C., D.,6.函数,则命题正确的()A.是周期为1的奇函数 B.是周期为2的偶函数C.是周期为1的非奇非偶函数 D.是周期为2的非奇非偶函数7.若三个实数a,b,c成等比数列,其中a=3-5,c=3+A.2 B.-2 C.±2 D.48.已知的内角的对边分别为,若,则的形状为()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等腰或直角三角形9.已知:,,若函数和有完全相同的对称轴,则不等式的解集是A. B.C. D.10.如图所示,在正四棱锥中,分别是,,的中点,动点在线段上运动时,下列结论不恒成立的是().A.与异面 B.面 C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在中,、、所对的边依次为、、,且,若用含、、,且不含、、的式子表示,则_______.12.已知圆锥如图所示,底面半径为,母线长为,则此圆锥的外接球的表面积为___.13.已知函数是定义域为的偶函数.当时,,关于的方程,有且仅有5个不同实数根,则实数的取值范围是_____.14.已知三棱锥,若平面ABC,,则异面直线PB与AC所成角的余弦值为______.15.已知3a=2,则32a=____,log318﹣a=_____16.数列满足下列条件:,且对于任意正整数,恒有,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,求(1)(2)18.如图,函数,其中的图象与y轴交于点.(1)求的值;(2)求函数的单调递增区间;(3)求使的x的集合.19.某网站推出了关于扫黑除恶情况的调查,调查数据表明,扫黑除恶仍是百姓最为关心的热点,参与调查者中关注此问题的约占.现从参与关注扫黑除恶的人群中随机选出人,并将这人按年龄分组:第组,第组,第组,第组,第组,得到的频率分布直方图如图所示.(1)求出的值;(2)求这人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位).20.已知圆,点,直线.(1)求与直线l垂直,且与圆C相切的直线方程;(2)在x轴上是否存在定点B(不同于点A),使得对于圆C上任一点P,为常数?若存在,试求这个常数值及所有满足条件的点B的坐标;若不存在,请说明理由.21.如图,三棱柱,底面,且为正三角形,,,为中点.(1)求证:直线平面;(2)求二面角的大小.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】试题分析:直线的斜率,其倾斜角为.考点:直线的倾斜角.2、C【解析】
,由此判断①的正误,根据判断②的正误,由求出的单调递增区间,即可判断③的正误,结合的图象判断④的正误.【详解】因为,故①正确因为,故②不正确由得所以在区间上单调递增,故③正确若实数m使得方程在上恰好有三个实数解,结合的图象知,必有此时,另一解为即,,满足,故④正确综上可知:命题正确的是①③④故选:C【点睛】本题考查的是三角函数的图象及其性质,解决这类问题时首先应把函数化成三角函数基本型.3、B【解析】
利用进制数化为十进制数的计算公式,,从而得解.【详解】由题意,,故选.【点睛】本题主要考查八进制数与十进制数之间的转化,熟练掌握进制数与十进制数之间的转化计算公式是解题的关键.4、A【解析】
由题意,则,再由数量积的坐标表示公式即可得到关于的方程,解出它的值【详解】由,,则,即解得:故选:A【点睛】本题考查数量积判断两个平面向量的垂直关系,向量的数量积坐标表示,属于基础题.5、D【解析】
分别计算出他们的平均数和方差,比较即得解.【详解】由题意可得,,,.故,.故选D【点睛】本题主要考查平均数和方差的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.6、B【解析】由题得函数的周期为T==2,又f(x)=sin(πx−)−1=−cosπx−1,从而得出函数f(x)为偶函数.故本题正确答案为B.7、C【解析】
由实数a,b,c成等比数列,得b2【详解】由实数a,b,c成等比数列,得b2所以b=±2.故选C.【点睛】本题主要考查了等比数列的基本性质,属于基础题.8、A【解析】中,,所以.由正弦定理得:.所以.所以,即因为为的内角,所以所以为等腰三角形.故选A.9、B【解析】
,所以因此,选B.10、D【解析】如图所示,连接AC、BD相交于点O,连接EM,EN.(1)由正四棱锥S−ABCD,可得SO⊥底面ABCD,AC⊥BD,∴SO⊥AC.∵SO∩BD=O,∴AC⊥平面SBD,∵E,M,N分别是BC,CD,SC的中点,∴EM∥BD,MN∥SD,而EM∩MN=N,∴平面EMN∥平面SBD,∴AC⊥平面EMN,∴AC⊥EP.故C正确.(2)由异面直线的定义可知:EP与SD是异面直线,故A正确;(3)由(1)可知:平面EMN∥平面SBD,∴EP∥平面SBD,因此B正确.(4)当P与M重合时,有∥,其他情况都是异面直线即D不正确.故选D点睛:本题抓住正四棱锥的特征,顶点在底面的投影为底面正方形的中心,即SO⊥底面ABCD,EP为动直线,所以要证EP∥面,可先证EP所在的平面平行于面SBD,要证⊥可先证AC垂直于EP所在的平面,所以化动为静的处理思想在立体中常用.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用诱导公式,二倍角公式,余弦定理化简即可得解.【详解】.故答案为.【点睛】本题主要考查了诱导公式,二倍角的三角函数公式,余弦定理,属于中档题.12、【解析】
根据圆锥的底面和外接球的截面性质可得外接球的球心在上,再根据勾股定理可得求的半径.【详解】由圆锥的底面和外接球的截面性质可得外接球的球心在上,设球心为,球的半径为,则,圆,因为,所以,所以,,则有.解得,则.【点睛】本题主要考查了几何体的外接球,关键是会找到球心求出半径,通常结合勾股定理求.属于难题.13、.【解析】
令,则原方程为,根据原方程有且仅有5个不同实数根,则有5个不同的解,结合图像特征,求出的值或范围,即为方程解的值或范围,转化为范围,即可求解.【详解】令,则原方程为,当时,,且为偶函数,做出图像,如下图所示:当时,有一个解;当或,有两个解;当时,有四个解;当或时,无解.,有且仅有5个不同实数根,关于的方程有一个解为,,另一个解为,在区间上,所以,实数的取值范围是.故答案为:.【点睛】本题考查复合方程根的个数求参数范围,考查了分段函数的应用,利用换元法结合的函数的奇偶性的对称性,利用数形结合是解题的关键,属于难题.14、【解析】
过B作,且,则或其补角即为异面直线PB与AC所成角由此能求出异面直线PB与AC所成的角的余弦值.【详解】过B作,且,则四边形为菱形,如图所示:或其补角即为异面直线PB与AC所成角.设.,,平面ABC,,.异面直线PB与AC所成的角的余弦值为.故答案为.【点睛】本题考查异面直线所成角的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.15、42.【解析】
由已知结合指数式的运算性质求解,把化为对数式得到,代入,再由对数的运算性质求解.【详解】∵,∴,由,得,∴.故答案为:,.【点睛】本题考查指数式与对数式的互化,考查对数的运算性质,属于基础题.16、512【解析】
直接由,可得,这样推下去,再带入等比数列的求和公式即可求得结论。【详解】故选C。【点睛】利用递推式的特点,反复带入递推式进行计算,发现规律,求出结果,本题是一道中等难度题目。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
利用同角三角函数基本关系式化弦为切,即可求解(1)(2)的值,得到答案.【详解】(1)由题意,知,则;(2)由==.【点睛】本题主要考查了三角函数的化简求值,以及同角三角函数基本关系式的应用,着重考查了推理与运算能力,属于基础题.18、(1),(2),,(3)【解析】
(1)由函数图像过定点,代入运算即可得解;(2)由三角函数的单调增区间的求法求解即可;(3)由,求解不等式即可得解.【详解】解:(1)因为函数图象过点,所以,即.因为,所以.(2)由(1)得,所以当,,即,时,是增函数,故的单调递增区间为,.(3)由,得,所以,,即,,所以时,x的集合为.【点睛】本题考查了利用函数图像的性质求解函数解析式,重点考查了三角函数单调区间的求法及解三角不等式,属基础题.19、(1)0.035(2)平均数为:41.5岁中位数为:42.1岁【解析】
(1)根据频率之和为1,结合题中条件,直接列出式子计算,即可得出结果;(2)根据每组的中间值乘该组的频率再求和,即可得出平均数;根据中位数两边的频率之和相等,即可求出中位数.【详解】(1)由题意可得:,解得;(2)由题中数据可得:岁,设中位数为,则,∴岁.【点睛】本题主要考查完善频率分布直方图,以及由频率分布直方图求平均数,中位数等,熟记频率的性质,以及平均数与中位数的计算方法即可,属于常考题型.20、(1)或(2)存在,,【解析】
(1)先设与直线l垂直的直线方程为,再结合点到直线的距离公式求解即可;(2)先设存在,利用都有为常数及在圆上,列出等式,然后利用恒成立求解即可.【详解】解:(1)由直线.则可设与直线l垂直的直线方程为,又该直线与圆相切,则,则,故所求直线方程为或;(2)假设存在定点使得对于圆C上任一点P,为常数,则,所以,将代入上式化简整理得:对恒成立,所以,解得或,又,即,所以存在定点使得对于圆C上任一点P,为常数.【点睛】本题考查了点到直线的距离公式,重点考查了点与圆的位置关系,属中档题.21、(1)证明见解析;(2).【解析】
(1)连交于,连,则点为中点,为中点,得,即可证
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个体工商户与合伙人合同
- 专利权无偿转让合同
- VC投资项目合作合同范本
- 二手车抵押借款正式合同
- 个人资金入股合同范本
- 东莞市土地承包合同范本示例
- 三孩子离婚后共同财产处理合同范本
- 二房东与租户商铺租赁正式合同
- 中外合资企业专利使用权合同
- 中信银行借款合同书(适用于进出口贸易流动资金贷款)
- 2025版大学食堂冷链食材配送服务合同模板3篇
- 新能源发电项目合作开发协议
- 《中医体重管理临床指南》
- 2025年上半年潞安化工集团限公司高校毕业生招聘易考易错模拟试题(共500题)试卷后附参考答案
- 2024年铁岭卫生职业学院高职单招职业技能测验历年参考题库(频考版)含答案解析
- 2025年山东鲁商集团有限公司招聘笔试参考题库含答案解析
- 大型活动中的风险管理与安全保障
- 课题申报书:个体衰老差异视角下社区交往空间特征识别与优化
- 江苏省招标中心有限公司招聘笔试冲刺题2025
- 综采工作面过空巷安全技术措施
- 云南省丽江市2025届高三上学期复习统一检测试题 物理 含解析
评论
0/150
提交评论