版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省大庆大庆十中、二中、二十三中、二十八中2025届高一数学第二学期期末学业质量监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,三个内角成等差数列是的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分又非必要条件2.已知圆内接四边形ABCD各边的长度分别为AB=5,BC=8,CD=3,DA=5,则AC的长为()A.6 B.7 C.8 D.93.函数的部分图像如图所示,则该函数的解析式为()A. B.C. D.4.将函数的图象向左平移个长度单位后,所得到的图象关于轴对称,则的最小值是()A. B. C. D.5.过点斜率为-3的直线的一般式方程为()A. B.C. D.6.圆的半径为()A.1 B.2 C.3 D.47.已知变量x与y负相关,且由观测数据算得样本平均数=1.5,=5,则由该观测数据算得的线性回归方程可能是()A. B.C. D.8.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验公式为弧田面积,弧田(如图所示)由圆弧和其所对的弦围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为,半径为6米的弧田,按照上述经验公式计算所得弧田面积大约是()()A.16平方米 B.18平方米C.20平方米 D.24平方米9.为了得到函数y=sin(x+A.向左平行移动π3B.向右平行移动π3C.向上平行移动π3D.向下平行移动π310.如果将直角三角形的三边都增加1个单位长度,那么新三角形()A.一定是锐角三角形 B.一定是钝角三角形C.一定是直角三角形 D.形状无法确定二、填空题:本大题共6小题,每小题5分,共30分。11.已知三个顶点的坐标分别为,若⊥,则的值是______.12.设函数的部分图象如图所示,则的表达式______.13.将无限循环小数化为分数,则所得最简分数为______;14.如图,在B处观测到一货船在北偏西方向上距离B点1千米的A处,码头C位于B的正东千米处,该货船先由A朝着C码头C匀速行驶了5分钟到达C,又沿着与AC垂直的方向以同样的速度匀速行驶5分钟后到达点D,此时该货船到点B的距离是________千米.15.已知等差数列,的前项和分别为,,若,则______.16.函数的最大值为,最小值为,则的最小正周期为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.高二数学期中测试中,为了了解学生的考试情况,从中抽取了个学生的成绩(满分为100分)进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出得分在[50,60),[90,100]的数据).(1)求样本容量和频率分布直方图中的值;(2)在选取的样本中,从成绩是80分以上(含80分)的同学中随机抽取3名参加志愿者活动,所抽取的3名同学中至少有一名成绩在[90,100]内的概率..18.锐角三角形的内角A,B,C的对边分别为a,b,c,且.(1)求A;(2)若,,求面积.19.五一放假期间高速公路免费是让实惠给老百姓,但也容易造成交通堵塞.在某高速公路上的某时间段内车流量(单位:千辆/小时)与汽车的平均速度(单位:千米/小时)之间满足的函数关系(为常数),当汽车的平均速度为千米/小时时,车流量为千辆/小时.(1)在该时间段内,当汽车的平均速度为多少时车流量达到最大值?(2)为保证在该时间段内车流量至少为千辆/小时,则汽车的平均速度应控制在什么范围内?20.如果有穷数列(m为正整数)满足,即,那么我们称其为对称数列.(1)设数列是项数为7的对称数列,其中,为等差数列,且,依次写出数列的各项;(2)设数列是项数为(正整数)的对称数列,其中是首项为50,公差为-4的等差数列.记数列的各项和为数列,当k为何值时,取得最大值?并求出此最大值;(3)对于确定的正整数,写出所有项数不超过2m的对称数列,使得依次为该数列中连续的项.当时,求其中一个数列的前2015项和.21.求过三点的圆的方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
根据充分条件和必要条件的定义结合等差数列的性质进行求解即可.【详解】在△ABC中,三个内角成等差数列,可能是A,C,B成等差数列,则A+B=2C,则C=60°,不一定满足反之若B=60°,则A+C=120°=2B,则A、B、C成等差数列,∴三个内角成等差数列是的必要非充分条件,故选:B.【点睛】本题主要考查充分条件和必要条件的判断,考查了等差中项的应用,属于基础题.2、B【解析】
分别在△ABC和△ACD中用余弦定理解出AC,列方程解出cosD,得出AC.【详解】在△ABC中,由余弦定理得AC2=AB2+BC2﹣2AB×BCcosB=89﹣80cosB,在△ACD中,由余弦定理得AC2=CD2+AD2﹣2AD×CDcosD=34﹣30cosD,∴89﹣80cosB=34﹣30cosD,∵A+C=180°,∴cosB=﹣cosD,∴cosD,∴AC2=34﹣30×()=1.∴AC=2.故选B.【点睛】本题考查了余弦定理的应用,三角形的解法,考查了圆内接四边形的性质的应用,属于中档题.3、A【解析】
根据图象求出即可得到函数解析式.【详解】显然,因为,所以,所以,由得,所以,即,,因为,所以,所以.故选:A【点睛】本题考查了根据图象求函数解析式,利用周期求,代入最高点的坐标求是解题关键,属于基础题.4、B【解析】
试题分析:由题意得,,令,可得函数的图象对称轴方程为,取是轴右侧且距离轴最近的对称轴,因为将函数的图象向左平移个长度单位后得到的图象关于轴对称,的最小值为,故选B.考点:两角和与差的正弦函数及三角函数的图象与性质.【方法点晴】本题主要考查了两角和与差的正弦函数及三角函数的图象与性质,将三角函数图象向左平移个单位,所得图象关于轴对称,求的最小值,着重考查了三角函数的化简、三角函数图象的对称性等知识的灵活应用,本题的解答中利用辅助角公式,化简得到函数,可取出函数的对称轴,确定距离最近的点,即可得到结论.5、A【解析】
由点和斜率求出点斜式方程,化为一般式方程即可.【详解】解:过点斜率为的直线方程为,化为一般式方程为;故选:.【点睛】本题考查了由点以及斜率求点斜式方程的问题,属于基础题.6、A【解析】
将圆的一般方程化为标准方程,确定所求.【详解】因为圆,所以,所以,故选A.【点睛】本题考查圆的标准方程与一般方程互化,圆的标准方程通过展开化为一般方程,圆的一般方程通过配方化为标准方程,属于简单题.7、A【解析】
先由变量负相关,可排除D;再由回归直线过样本中心,即可得出结果.【详解】因为变量x与y负相关,所以排除D;又回归直线过样本中心,A选项,过点,所以A正确;B选项,不过点,所以B不正确;C选项,不过点,所以C不正确;故选A【点睛】本题主要考查线性回归直线,熟记回归直线的意义即可,属于常考题型.8、C【解析】分析:根据已知数据分别计算弦和矢的长度,再按照弧田面积经验公式计算,即可得到答案.详解:由题可知,半径,圆心角,弦长:,弦心距:,所以矢长为.按照弧田面积经验公式得,面积故选C.点睛:本题考查弓形面积以及古典数学的应用问题,考查学生对题意的理解和计算能力.9、A【解析】试题分析:为得到函数y=sin(x+π3)【考点】三角函数图象的平移【名师点睛】本题考查三角函数图象的平移,函数y=f(x)的图象向右平移a个单位长度得y=f(x-a)的图象,而函数y=f(x)的图象向上平移a个单位长度得y=f(x)+a的图象.左、右平移涉及的是x的变化,上、下平移涉及的是函数值f(x)的变化.10、A【解析】
直角三角形满足勾股定理,,再比较,,大小关系即可.【详解】设直角三角形满足,则,又为新三角形最长边,所以所以最大角为锐角,所以三角形为锐角三角形.故选A【点睛】判断三角形形状一般可通过余弦定理判断,若有一角的余弦值小于零则为钝角三角形,等于零则为直角三角形,最大角的余弦值大于零则为锐角三角形,属于较易题目.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
求出,再利用,求得.【详解】,因为⊥,所以,解得:.【点睛】本题考查向量的坐标表示、数量积运算,要注意向量坐标与点坐标的区别.12、【解析】
根据图象的最高点得到,由图象得到,故得,然后通过代入最高点的坐标或运用“五点法”得到,进而可得函数的解析式.【详解】由图象可得,∴,∴,∴.又点在函数的图象上,∴,∴,∴.又,∴.∴.故答案为.【点睛】已知图象确定函数解析式的方法(1)由图象直接得到,即最高点的纵坐标.(2)由图象得到函数的周期,进而得到的值.(3)的确定方法有两种.①运用代点法求解,通过把图象的最高点或最低点的坐标代入函数的解析式求出的值;②运用“五点法”求解,即由函数最开始与轴的交点(最靠近原点)的横坐标为(即令,)确定.13、【解析】
将设为,考虑即为,两式相减构造方程即可求解出的值,即可得到对应的最简分数.【详解】设,则,由可知,解得.故答案为:.【点睛】本题考查将无限循环小数化为最简分数,主要采用方程的思想去计算,难度较易.14、3【解析】
先在中,由余弦定理算出和,然后在中由余弦定理即可求出.【详解】由题意可得,在中,所以由余弦定理得:即,所以因为所以所以所以在中有:即故答案为:3【点睛】本题考查三角形的解法,余弦定理的应用,是基本知识的考查.15、【解析】
利用等差数列的性质以及等差数列奇数项之和与中间项的关系进行化简求解.【详解】因为是等差数列,所以,又因为为等差数列,所以,故.【点睛】(1)在等差数列中,若,则有;(2)在等差数列.16、【解析】
先换元,令,所以,利用一次函数的单调性,列出等式,求出,然后利用正切型函数的周期公式求出即可.【详解】令,所以,由于,所以在上单调递减,即有,解得,,故最小正周期为.【点睛】本题主要考查三角函数的性质的应用,正切型函数周期公式的应用,以及换元法的应用.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)40,0.025,0.005(2)【解析】试题分析:(Ⅰ)由样本容量和频数频率的关系易得答案;(Ⅱ)由题意可知,分数在[80,100)内的学生有6人,分数在[90,100]内的学生有2人,结合古典概型概率公式和对立事件概率公式可求得至少有一名成绩在[90,100]内的概率试题解析:(1)由题意可知,样本容量,,.……………6分(2)由题意,分数在内的有4人,分数在内的有2人,成绩是分以上(含分)的学生共6人.从而抽取的名同学中得分在的学生人数的所有可能的取值为.,所以所求概率为考点:频率分布直方图;茎叶图18、(1),(2)【解析】
(1)利用三角函数的和差公式化简已知等式可得,结合为锐角可得的值.(2)由余弦定理可得,解得的值,根据三角形的面积公式即可求解.【详解】(1)∵,∴∵∴可得:∵A,C为锐角,∴,可得:(2)∵∴由余弦定理,可得:,即,解得:或3,因为为锐角三角形,所以需满足所以所以的面积为【点睛】本题主要考查了三角函数恒等变换及余弦定理,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.19、(1)当汽车的平均速度时车流量达到最大值。(2)【解析】
(1)首先根据题意求出,再利用基本不等式即可求出答案.(2)根据题意列出不等式,解不等式即可.【详解】(1)有题知:,解得.所以,因为,当且仅当时,取“”.所以当汽车的平均速度时车流量达到最大值.(2)有题知:,整理得:,解得:.所以当时,在该时间段内车流量至少为千辆/小时.【点睛】本题第一问考查利用基本不等式求最值,第二问考查了二次不等式的解法,属于中档题.20、(1)2,5,8,11,8,5,2;(2);(3)答案见详解【解析】
(1)求出前四项的公差,然后写出即可(2)先算出,然后(3)依题意,可写出所有项
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人健身房设备租赁合同(2024版)3篇
- 2025版仲裁申请书行政公文范本制作与培训服务合同2篇
- 2025版论行政合同中行政主体权益保护与义务履约4篇
- 2024版商业房产销售合同条款样本
- 2025年度文化创意产业园区土地承包协议范本4篇
- 2025年度茶叶行业人才培训与就业合作合同4篇
- 二零二五年方管行业质量标准制定合同3篇
- 2025年度智能家居系统瓷砖采购合同协议书4篇
- 专利技术成果应用许可合同2024版一
- 二零二五年度装配式建筑构件设计、制造与施工合同3篇
- 寒潮雨雪应急预案范文(2篇)
- 垃圾车驾驶员聘用合同
- 变压器搬迁施工方案
- 单位转账个人合同模板
- 八年级语文下册 成语故事 第十五课 讳疾忌医 第六课时 口语交际教案 新教版(汉语)
- 2024年1月高考适应性测试“九省联考”数学 试题(学生版+解析版)
- EPC项目采购阶段质量保证措施
- T-NAHIEM 101-2023 急诊科建设与设备配置标准
- 四川2024年专业技术人员公需科目“数字经济与驱动发展”参考答案(通用版)
- 煤炭装卸服务合同
- 广东省佛山市顺德区2023学年中考一模物理试题(含答案解析)
评论
0/150
提交评论