2025届福建省邵武七中数学高一下期末学业水平测试模拟试题含解析_第1页
2025届福建省邵武七中数学高一下期末学业水平测试模拟试题含解析_第2页
2025届福建省邵武七中数学高一下期末学业水平测试模拟试题含解析_第3页
2025届福建省邵武七中数学高一下期末学业水平测试模拟试题含解析_第4页
2025届福建省邵武七中数学高一下期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届福建省邵武七中数学高一下期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设函数是定义在上的奇函数,当时,,则()A.-4 B. C. D.2.下面结论中,正确结论的是()A.存在两个不等实数,使得等式成立B.(0<x<π)的最小值为4C.若是等比数列的前项的和,则成等比数列D.已知的三个内角所对的边分别为,若,则一定是锐角三角形3.已知某区中小学学生人数如图所示,为了解学生参加社会实践活动的意向,拟采用分层抽样的方法来进行调查。若高中需抽取20名学生,则小学与初中共需抽取的人数为()A.30 B.40 C.70 D.904.下列四个函数中,与函数完全相同的是()A. B.C. D.5.函数的最小正周期是()A. B. C. D.6.若,则一定有()A. B. C. D.7.平面内任一向量都可以表示成的形式,下列关于向量的说法中正确的是()A.向量的方向相同 B.向量中至少有一个是零向量C.向量的方向相反 D.当且仅当时,8.如图,某船在A处看见灯塔P在南偏东方向,后来船沿南偏东的方向航行30km后,到达B处,看见灯塔P在船的西偏北方向,则这时船与灯塔的距离是:A.10kmB.20kmC.D.9.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是()A.“至少有1个白球”和“都是红球”B.“至少有2个白球”和“至多有1个红球”C.“恰有1个白球”和“恰有2个白球”D.“至多有1个白球”和“都是红球”10.空气质量指数是反映空气质量状况的指数,指数值越小,表明空气质量越好,其对应关系如表:指数值0~5051~100101~150151~200201~300空气质量优良轻度污染中度污染重度污染严重污染如图是某市10月1日-20日指数变化趋势:下列叙述错误的是()A.这20天中指数值的中位数略高于100B.这20天中的中度污染及以上的天数占C.该市10月的前半个月的空气质量越来越好D.总体来说,该市10月上旬的空气质量比中旬的空气质量好二、填空题:本大题共6小题,每小题5分,共30分。11.已知为锐角,,则________.12.过点,且与直线垂直的直线方程为.13.已知函数f(n)=n2cos(nπ),且an=f(n)+f(n+1),则a1+a2+a3+…+a100=_______14.函数y=tan15.已知等比数列中,若,,则_____.16.已知,则的最小值是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,函数,且当,时,的最小值为.(1)求的值,并求的单调递增区间;(2)先将函数的图象上所有点的横坐标缩小到原来的倍(纵坐标不变),再将所得图象向右平移个单位,得到函数的图象,求方程在区间上所有根之和.18.已知一个几何体是由一个直角三角形绕其斜边旋转一周所形成的.若该三角形的周长为12米,三边长由小到大依次为a,b,c,且b恰好为a,c的算术平均数.(1)求a,b,c;(2)若在该几何体的表面涂上一层油漆,且每平方米油漆的造价为5元,求所涂的油漆的价格.19.眉山市位于四川西南,有“千载诗书城,人文第一州”的美誉,这里是大文豪苏轼、苏洵、苏辙的故乡,也是人们旅游的好地方.在今年的国庆黄金周,为了丰富游客的文化生活,每天在东坡故里三苏祠举行“三苏文化”知识竞赛.已知甲、乙两队参赛,每队3人,每人回答一个问题,答对者为本队赢得一分,答错得零分.假设甲队中每人答对的概率均为,乙队中3人答对的概率分别为,,,且各人回答正确与否相互之间没有影响.(1)分别求甲队总得分为0分;2分的概率;(2)求甲队得2分乙队得1分的概率.20.直线经过点,且与圆相交与两点,截得的弦长为,求的方程.21.已知函数(1)若,求函数的零点;(2)若在恒成立,求的取值范围;(3)设函数,解不等式.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

由奇函数的性质可得:即可求出【详解】因为是定义在上的奇函数,所以又因为当时,,所以,所以,选A.【点睛】本题主要考查了函数的性质中的奇偶性。其中奇函数主要有以下几点性质:1、图形关于原点对称。2、在定义域上满足。3、若定义域包含0,一定有。2、A【解析】

对各个选项逐一判断,对于选项A,由,代入计算,即可判断是否正确;对于选项B,设,结合函数的单调性,即可判断是否正确;对于选项C,由公比为为偶数,即可判断是否正确;对于选项D,由余弦定理,即可判断是否正确.【详解】对于选项A,两个不等实数,使得等式成立,故A正确;对于选项B,若设设,可得在递减,即函数的最小值为,故B错误;对于选项C,是等比数列的前项的和,当公比,为偶数时,则,均为,不能够成等比数列,故C错误;对于选项D,中,若,可得,即为锐角,不能判断一定是锐角三角形,故D错误.故选:A.【点睛】本题考查两角和的正弦公式、基本不等式和等比数列的性质,以及余弦定理的应用,属于基础题.3、C【解析】

根据高中抽取的人数和高中总人数计算可得抽样比;利用小学和初中总人数乘以抽样比即可得到结果.【详解】由题意可得,抽样比为:则小学和初中共抽取:人本题正确选项:【点睛】本题考查分层抽样中样本数量的求解,关键是能够明确分层抽样原则,准确求解出抽样比,属于基础题.4、C【解析】

先判断函数的定义域是否相同,再通过化简判断对应关系是否相同,从而判断出与相同的函数.【详解】的定义域为,A.,因为,所以,定义域为或,与定义域不相同;B.,因为,所以,所以定义域为,与定义域不相同;C.,因为,所以定义域为,又因为,所以与相同;D.,因为,所以,定义域为,与定义域不相同.故选:C.【点睛】本题考查与三角函数有关的相同函数的判断,难度一般.判断相同函数时,首先判断定义域是否相同,定义域相同时再去判断对应关系是否相同(函数化简),结合定义域与对应关系即可判断出是否是相同函数.5、A【解析】

作出函数的图象可得出该函数的最小正周期。【详解】作出函数的图象如下图所示,由图象可知,函数的最小正周期为,故选:A。【点睛】本题考查三角函数周期的求解,一般而言,三角函数最小正周期的求解方法有如下几种:(1)定义法:即;(2)公式法:当时,函数或的最小正周期为,函数最小正周期为;(3)图象法。6、C【解析】

由题,可得,且,即,整理后即可得到作出判断【详解】由题可得,则,因为,则,,则有,所以,即故选C【点睛】本题考查不等式的性质的应用,属于基础题7、D【解析】

根据平面向量的基本定理,若平面内任一向量都可以表示成的形式,构成一个基底,所以向量不共线.【详解】因为任一向量,根据平面向理的基本定理得,所以向量不共线,故A,C不正确.是一个基底,所以不能为零向量,故B不正确.因为不共线,且不能为零向量,所以若,当且仅当,故D正确.故选:D【点睛】本题主要考查平面向量的基本定理,还考查了理解辨析的能力,属于基础题.8、C【解析】

在中,利用正弦定理求出得长,即为这时船与灯塔的距离,即可得到答案.【详解】由题意,可得,即,在中,利用正弦定理得,即这时船与灯塔的距离是,故选C.【点睛】本题主要考查了正弦定理,等腰三角形的判定与性质,以及特殊角的三角函数值的应用,其中熟练掌握正弦定理是解答本题的关键,着重考查了推理与运算能力,属于基础题.9、C【解析】

结合互斥事件与对立事件的概念,对选项逐个分析可选出答案.【详解】对于选项A,“至少有1个白球”和“都是红球”是对立事件,不符合题意;对于选项B,“至少有2个白球”表示取出2个球都是白色的,而“至多有1个红球”表示取出的球1个红球1个白球,或者2个都是白球,二者不是互斥事件,不符合题意;对于选项C,“恰有1个白球”表示取出2个球1个红球1个白球,与“恰有2个白球”是互斥而不对立的两个事件,符合题意;对于选项D,“至多有1个白球”表示取出的2个球1个红球1个白球,或者2个都是红球,与“都是红球”不是互斥事件,不符合题意.故选C.【点睛】本题考查了互斥事件和对立事件的定义的运用,考查了学生对知识的理解和掌握,属于基础题.10、C【解析】

根据所给图象,结合中位数的定义、指数与污染程度的关系以及古典概型概率公式,对四个选项逐一判断即可.【详解】对,因为第10天与第11天指数值都略高100,所以中位数略高于100,正确;对,中度污染及以上的有第11,13,14,15,17天,共5天占,正确;对,由图知,前半个月中,前4天的空气质量越来越好,后11天该市的空气质量越来越差,错误;对,由图知,10月上旬大部分指数在100以下,10月中旬大部分指数在100以上,所以正确,故选C.【点睛】与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

利用同角三角函数的基本关系求出,并利用二倍角正切公式计算出的值,再利用两角和的正切公式求出的值.【详解】为锐角,则,,由二倍角正切公式得,因此,,故答案为.【点睛】本题考查同角三角函数的基本关系求值、二倍角正切公式和两角和的正切公式求值,解题的关键就是灵活利用这些公式进行计算,考查运算求解能力,属于中等题.12、【解析】

直线垂直表示斜率乘积为-1,所以可得新直线斜率,代入点即可.【详解】直线的斜率等于-1,所以与之垂直直线斜率,再通过点斜式直线方程:,即.【点睛】此题考查直线垂直,直线垂直表示两直线斜率之积为-1,属于简单题目.13、-1【解析】

分n为偶数和奇数求得数列的奇数项和偶数项均为等差数列,然后利用分组求和得答案.【详解】若n为偶数,则an=f(n)+f(n+1)=n2﹣(n+1)2=﹣(2n+1),偶数项为首项为a2=﹣5,公差为﹣4的等差数列;若n为奇数,则an=f(n)+f(n+1)=﹣n2+(n+1)2=2n+1,奇数项为首项为a1=3,公差为4的等差数列.∴a1+a2+a3+…+a1=(a1+a3+…+a99)+(a2+a4+…+a1)1.故答案为:1.【点睛】本题考查数列递推式,考查了等差关系的确定,训练了等差数列前n项和的求法,是中档题.14、{【解析】

解方程12【详解】由题得12x+故答案为{x|x≠2kπ+【点睛】本题主要考查正切型函数的定义域的求法,意在考查学生对该知识的理解掌握水平,属于基础题.15、4【解析】

根据等比数列的等积求解即可.【详解】因为,故.又,故.故答案为:4【点睛】本题主要考查了等比数列等积性的运用,属于基础题.16、【解析】分析:利用题设中的等式,把的表达式转化成,展开后,利用基本不等式求得y的最小值.详解:因为,所以,所以(当且仅当时等号成立),则的最小值是,总上所述,答案为.点睛:该题考查的是有关两个正数的整式形式和为定值的情况下求其分式形式和的最值的问题,在求解的过程中,注意相乘,之后应用基本不等式求最值即可,在做乘积运算的时候要注意乘1是不变的,如果不是1,要做除法运算.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】

(1)运用向量的数量积运算和辅助角公式化简,求解和求其单调区间;(2)根据图像的平移和函数的对称轴求解.【详解】(1)函数,得.即,由题意得,得所以,函数的单调增区间为.(2)由题意,,又,得解得:或即或或故所有根之和为.【点睛】本题考查正弦型函数的值域、单调性和对称性,属于基础题.18、(1)3,4,1;(2)元.【解析】

(1)由题意,根据周长、三边关系、勾股定理,a,b,c,建立方程组,解得即可.(2)根据题意,旋转得到的几何体为由底面半径为米,母线长分别为米3和4米的两个圆锥所组成的几何体,计算几何体的表面积再乘单价即可求解.【详解】(1)由题意得,,所以,又,且,二者联立解得,,所以a,b,c的值分别为3,4,1.(2)绕其斜边旋转一周得到的几何体为由底面半径为米,母线长分别为米3和4米的两个圆锥所组成的几何体,故其表面积为平方米.因为每平方米油漆的造价为1元,所以所涂的油漆的价格为元.所涂的油漆的价格为:元.【点睛】本题考查三角形三边关系及旋转体表面积的应用,考查计算能力与空间想象能力,属于基础题.19、(1)0分概率;2分概率;(2)【解析】

(1)记“甲队总得分为0分”为事件,“甲队总得分为2分”为事件,分析可知A事件三人都没有答对,按相互独立事件同时发生计算概率,B事件即甲队三人中有1人答错,其余两人答对,由n次独立事件恰有k次发生计算即可(2)记“乙队得1分”为事件,“甲队得2分乙队得1分”为事件,分别有互斥事件概率加法公式及相互独立事件乘法公式计算即可.【详解】(1)记“甲队总得分为0分”为事件,“甲队总得分为2分”为事件,甲队总得分为0分,即甲队三人都回答错误,其概率;甲队总得分为2分,即甲队三人中有1人答错,其余两人答对,其概率;(2)记“乙队得1分”为事件,“甲队得2分乙队得1分”为事件;事件即乙队三人中有2人答错,其余1人答对,则,甲队得2分乙队得1分即事件、同时发生,则.【点睛】本题主要考查了相互独立事件的概率计算,涉及n次独立事件中恰有k次发生的概率公式的应用,互斥事件的概率加法公式,属于中档题.20、或【解析】

直线截圆得的弦长为,结合圆的半径为5,利用勾股定理可得圆心到直线的距离,再利用

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论