版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖北省鄂州市、黄冈市高一下数学期末综合测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量,,,且,则实数的值为A. B. C. D.2.从一批产品中取出两件产品,事件“至少有一件是次品”的对立事件是A.至多有一件是次品 B.两件都是次品C.只有一件是次品 D.两件都不是次品3.如图,在正方体ABCD﹣A1B1C1D1中,给出以下四个结论:①D1C∥平面A1ABB1②A1D1与平面BCD1相交③AD⊥平面D1DB④平面BCD1⊥平面A1ABB1正确的结论个数是()A.1 B.2 C.3 D.44.在中,,点是内(包括边界)的一动点,且,则的最大值是()A. B. C. D.5.在中,三个内角成等差数列是的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分又非必要条件6.已知数列的前项为和,且,则()A.5 B. C. D.97.已知、是球的球面上的两点,,点为该球面上的动点,若三棱锥体积的最大值为,则球的表面积为()A. B. C. D.8.已知正项数列,若点在函数的图像上,则()A.12 B.13 C.14 D.169.已知,是两个单位向量,且夹角为,则与数量积的最小值为()A. B. C. D.10.已知x,y∈R,且x>y>0,则()A. B.C. D.lnx+lny>0二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,,,则________.12.在△ABC中,内角A、B、C所对的边分别为a、b、c,若,则_____.13.已知,,且,若恒成立,则实数的取值范围是____.14.无穷等比数列的首项是某个正整数,公比为单位分数(即形如:的分数,为正整数),若该数列的各项和为3,则________.15.已知,若角的终边经过点,求的值.16.设,,为三条不同的直线,,为两个不同的平面,下列命题中正确的是______.(1)若,,,则;(2)若,,,则;(3)若,,,,则;(4)若,,,则.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知A、B分别在射线CM、CN(不含端点C)上运动,∠MCN=23π(Ⅰ)若a、b、(Ⅱ)若c=3,∠ABC=θ,试用θ表示ΔABC18.已知数列满足:(1)设数列满足,求的前项和:(2)证明数列是等差数列,并求其通项公式;19.已知某公司生产某款手机的年固定成本为400万元,每生产1万部还需另投入160万元.设公司一年内共生产该款手机x(x≥40)万部且并全部销售完,每万部的收入为R(x)万元,且R(x)=74000(1)写出年利润W(万元)关于年产量x(万部)的函数关系式;(2)当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润.20.已知圆的半径是2,圆心在直线上,且圆与直线相切.(1)求圆的方程;(2)若点是圆上的动点,点在轴上,的最大值等于7,求点的坐标.21.在锐角中,角,,所对的边分别为,,,且.(1)求;(2)若的面积为8,,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
求出的坐标,由得,得到关于的方程.【详解】,,因为,所以,故选A.【点睛】本题考查向量减法和数量积的坐标运算,考查运算求解能力.2、D【解析】试题分析:根据对立事件的定义,至少有n个的对立事件是至多有n﹣1个,由事件A:“至少有一件次品”,我们易得结果.解:∵至少有n个的否定是至多有n﹣1个又∵事件A:“至少有一件次品”,∴事件A的对立事件为:至多有零件次品,即是两件都不是次品.故答案为D.点评:本题考查的知识点是互斥事件和对立事件,互斥事件关键是要抓住不可能同时发生的要点,对立事件则要抓住有且只有一个发生,可以转化命题的否定,集合的补集来进行求解.3、B【解析】
在①中,由,得到平面;在②中,由,得到平面;在③中,由,得到与平面相交但不垂直;在④中,由平面,得到平面平面,即可求解.【详解】由正方体中,可得:在①中,因为,平面,平面,∴平面,故①正确;在②中,∵,平面,平面,∴平面,故②错误;在③中,∵,∴与平面相交但不垂直,故③错误;在④中,∵平面,平面,∴平面平面,故④正确.故选:B.【点睛】本题主要考查了命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.4、B【解析】
根据分析得出点的轨迹为线段,结合图形即可得到的最大值.【详解】如图:取,,,点是内(包括边界)的一动点,且,根据平行四边形法则,点的轨迹为线段,则的最大值是,在中,,,,,故选:B【点睛】此题考查利用向量方法解决平面几何中的线段长度最值问题,数形结合处理可以避免纯粹的计算,降低难度.5、B【解析】
根据充分条件和必要条件的定义结合等差数列的性质进行求解即可.【详解】在△ABC中,三个内角成等差数列,可能是A,C,B成等差数列,则A+B=2C,则C=60°,不一定满足反之若B=60°,则A+C=120°=2B,则A、B、C成等差数列,∴三个内角成等差数列是的必要非充分条件,故选:B.【点睛】本题主要考查充分条件和必要条件的判断,考查了等差中项的应用,属于基础题.6、D【解析】
先根据已知求出数列的通项,再求解.【详解】当时,,可得;当且时,,得,故数列为等比数列,首项为4,公比为2.所以所以.故选D【点睛】本题主要考查项和公式求数列通项,考查等比数列的通项的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.7、A【解析】
当点位于垂直于面的直径端点时,三棱锥的体积最大,利用三棱锥体积的最大值为,求出半径,即可求出球的表面积.【详解】如图所示,当点位于垂直于面的直径端点时,三棱锥的体积最大,设球的半径为,此时,.因此,球的表面积为.故选:A.【点睛】本题考查球的半径与表面积的计算,确定点的位置是关键,考查分析问题和解决问题的能力,属于中等题.8、A【解析】
由已知点在函数图象上求出通项公式,得,由对数的定义计算.【详解】由题意,,∴,∴.故选:A.【点睛】本题考查数列的通项公式,考查对数的运算.属于基础题.9、B【解析】
根据条件可得,,,然后进行数量积的运算即可.【详解】根据条件,,,,当时,取最小值.故选:B【点睛】本题考查了向量数量积的运算,同时考查了二次函数的最值,属于基础题.10、A【解析】
结合选项逐个分析,可选出答案.【详解】结合x,y∈R,且x>y>0,对选项逐个分析:对于选项A,,,故A正确;对于选项B,取,,则,故B不正确;对于选项C,,故C错误;对于选项D,,当时,,故D不正确.故选A.【点睛】本题考查了不等式的性质,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据已知角的范围分别求出,,利用整体代换即可求解.【详解】,,,所以,,,,所以,=故答案为:【点睛】此题考查三角函数给值求值的问题,关键在于弄清角的范围,准确得出三角函数值,对所求的角进行合理变形,用已知角表示未知角.12、【解析】
先利用同角三角函数的商数关系可得,再结合正弦定理及余弦定理化简可得,然后求解即可.【详解】解:因为,则,所以,即,所以,则,即,即即,故答案为:.【点睛】本题考查了同角三角函数的商数关系,重点考查了正弦定理及余弦定理的应用,属中档题.13、(-4,2)【解析】试题分析:因为当且仅当时取等号,所以考点:基本不等式求最值14、【解析】
利用无穷等比数列的各项和,可求得,从而,利用首项是某个自然数,可求,进而可求出.【详解】无穷等比数列各项和为3,,是个自然数,则,.故答案为:【点睛】本题主要考查了等比数列的前项和公式,需熟记公式,属于基础题.15、【解析】
由条件利用任意角的三角函数的定义,求得和的值,从而可得的值.【详解】因为角的终边经过点,所以,,则.故答案为:【点睛】本题主要考查任意角的三角函数的定义,属于基础题.16、(1)【解析】
利用线线平行的传递性、线面垂直的判定定理判定.【详解】(1),,,则,正确(2)若,,,则,错误(3)若,则不成立,错误(4)若,,,则,错误【点睛】本题主要考查线面垂直的判定定理判定,考查了空间想象能力,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)c=7或c=2.(1)=2sinθ+2【解析】试题分析:(Ⅰ)由题意可得a=c-4、b=c-1.又因∠MCN=π,,可得恒等变形得c1-9c+14=0,再结合c>4,可得c的值.(Ⅱ)在△ABC中,由正弦定理可得AC=1sⅠnθ,BC=,△ABC的周长f(θ)=|AC|+|BC|+|AB|=,再由利用正弦函数的定义域和值域,求得f(θ)取得最大值.试题解析:(Ⅰ)∵a、b、c成等差,且公差为1,∴a=c-4、b=c-1.又因∠MCN=π,,可得,恒等变形得c1-9c+14=0,解得c=2,或c=1.又∵c>4,∴c=2.(Ⅱ)在△ABC中,由正弦定理可得.∴△ABC的周长f(θ)=|AC|+|BC|+|AB|=,又,当,即时,f(θ)取得最大值.考点:1.余弦定理;1.正弦定理18、(1)(2)证明见解析,【解析】
(1)令n=1,即可求出,计算出,利用错位相减求出。(2)利用公式化简即可得证。再利用,求出公差,即可写出通项公式。【详解】解:在中,令,得,所以,①,②①②得化简得由得:,两式相减整理得:从而有,相减得:即故数列为等差数列,又,故公差【点睛】本题主要考查利用错位相减法求等差乘等比数列的前n项的和,属于基础题。19、(1)W=73600-400000x-160x,(x≥40);(2)当x=50【解析】
(1)根据题意,即可求解利润关于产量的关系式为W=(2)由(1)的关系式,利用基本不等式求得最大值,即可求解最大利润.【详解】(1)由题意,可得利润W关于年产量x的函数关系式为W=xRx=74000-400000x-160x-400=73600-2由1可得W=73600-=73600-16000=57600,当且仅当400000x=160,即x=50时取等号,所以当x=50时,【点睛】本题主要考查了函数的实际应用问题,以及利用基本不等式求最值,其中解答中认真审题,得出利润W关于年产量x的函数关系式,再利用基本不等式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.20、(1)或;(2)或.【解析】
(1)利用圆心在直线上设圆心坐标,利用相切列方程即可得解;(2)利用最大值为7确定圆,设点的坐标,找到到圆上点的最大距离列方程得解.【详解】解:(1)设圆心的坐标为,因为圆与直线相切,所以,即,解得或,故圆的方程为:,或;(2)由最大值等于可知,若圆的方程为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 茶园互换合同
- 财务合同管理岗位风险
- 贝雷片租赁合同范本
- 保险合同十句话
- 山西省2024八年级物理上册第六章质量与密度专题训练12.理解质量和密度课件新版新人教版
- 深圳市中荟高级中学2024-2025学年高三上学期期中考试数学试卷
- 《船用钢质斜梯》
- 贵州省贵阳市观观山湖区美的中学2024-2025学年九年级上学期11月期中考试化学试题
- 无卤低烟阻燃电缆料相关项目投资计划书
- 石英玻璃管(棒)相关行业投资规划报告
- 一例肺癌术后并发肺栓塞患者的个案护理
- 2022版新课标初中数学《数与代数、图形与几何》解读
- 心房颤动诊断和治疗中国指南(2023) 解读
- 中式面点技艺智慧树知到期末考试答案2024年
- 期中模拟试卷(试题)2023-2024学年外研版(一起)英语五年级上册
- 幼儿园主题探究活动
- 唐宋名家词智慧树知到期末考试答案2024年
- 2024年4月贵州省高三年级适应性考试历史试卷
- 临“震”不慌+守护生命安全-防震减灾安全教育原创
- 数字媒体艺术设计大学生职业生涯规划书
- 2023年绍兴市嵊州市事业单位招聘考试真题及答案
评论
0/150
提交评论