2025届黑龙江省五校联考数学高一下期末综合测试试题含解析_第1页
2025届黑龙江省五校联考数学高一下期末综合测试试题含解析_第2页
2025届黑龙江省五校联考数学高一下期末综合测试试题含解析_第3页
2025届黑龙江省五校联考数学高一下期末综合测试试题含解析_第4页
2025届黑龙江省五校联考数学高一下期末综合测试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届黑龙江省五校联考数学高一下期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.向量,,若,则()A.2 B. C. D.2.《九章算术》中有这样一个问题:今有竹九节,欲均减容之(其意为:使容量均匀递减),上三节容四升,下三节容二升,中三节容几何?()A.二升 B.三升 C.四升 D.五升3.已知直线经过点,且倾斜角为,则直线的方程为()A. B.C. D.4.半径为的半圆卷成一个圆锥,它的体积是()A. B. C. D.5.下列函数中,既是偶函数又在(0,+∞)上是单调递减的是()A.y=-cosx B.y=lgx6.供电部门对某社区1000位居民2019年4月份人均用电情况进行统计后,按人均用电量分为[0,10),[10,20),[20,30),[40,50]五组,整理得到如下的频率分布直方图,则下列说法错误的是()A.4月份人均用电量人数最多的一组有400人B.4月份人均用电量不低于20度的有500人C.4月份人均用电量为25度D.在这1000位居民中任选1位协助收费,选到的居民用电量在[30,40)一组的概率为17.设在中,角所对的边分别为,若,则的形状为()A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定8.设向量,,则是的A.充分不必要条件 B.充分必要条件C.必要不充分条件 D.既不充分也不必要条件9.在中,内角,,的对边分别为,,,若,且,则的形状为()A.等边三角形 B.等腰直角三角形C.最大角为锐角的等腰三角形 D.最大角为钝角的等腰三角形10.若向量的夹角为,且,,则向量与向量的夹角为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.读程序,完成下列题目:程序如图:(1)若执行程序时,没有执行语句,则输入的的范围是_______;(2)若执行结果,输入的的值可能是___.12.将正整数按下图方式排列,2019出现在第行第列,则______;12345678910111213141516………13.在平面直角坐标系中,圆的方程为.若直线上存在一点,使过所作的圆的两条切线相互垂直,则实数的取值范围是______.14.不等式的解集为_________________;15.的值域是______.16.已知圆锥的底面半径为3,体积是,则圆锥侧面积等于___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在三棱柱中,平面ABC,,,D,E分别为AB,中点.(Ⅰ)求证:平面;(Ⅱ)求证:四边形为平行四边形;(Ⅲ)求证:平面平面.18.在△ABC中,AC=4,,.(Ⅰ)求的大小;(Ⅱ)若D为BC边上一点,,求DC的长度.19.如图,在三棱柱中,是边长为4的正三角形,侧面是矩形,分别是线段的中点.(1)求证:平面;(2)若平面平面,,求三棱锥的体积.20.在中,角的对边分别为,的面积是30,.(1)求;(2)若,求的值.21.已知函数,且函数是偶函数,设(1)求的解析式;(2)若不等式≥0在区间(1,e2]上恒成立,求实数的取值范围;(3)若方程有三个不同的实数根,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】试题分析:,,得得,故选C.考点:向量的垂直运算,向量的坐标运算.2、B【解析】

由题意可得,上、中、下三节的容量成等差数列.再利用等差数列的性质,求出中三节容量,即可得到答案.【详解】由题意,上、中、下三节的容量成等差数列,上三节容四升,下三节容二升,则中三节容量为,故选B.【点睛】本题主要考查了等差数列的性质的应用,其中解答中熟记等差数列的等差中项公式是解答的关键,着重考查了运算与求解能力,属于基础题.3、C【解析】

根据倾斜角求得斜率,再根据点斜式写出直线方程,然后化为一般式.【详解】倾斜角为,斜率为,由点斜式得,即.故选C.【点睛】本小题主要考查倾斜角与斜率对应关系,考查直线的点斜式方程和一般式方程,属于基础题.4、A【解析】

根据圆锥的底面圆周长等于半圆弧长可计算出圆锥底面圆半径,由勾股定理可计算出圆锥的高,再利用锥体体积公式可计算出圆锥的体积.【详解】设圆锥的底面圆半径为,高为,则圆锥底面圆周长为,得,,所以,圆锥的体积为,故选:A.【点睛】本题考查圆锥体积的计算,解题的关键就是要计算出圆锥底面圆的半径和高,解题时要从已知条件列等式计算,并分析出一些几何等量关系,考查空间想象能力与计算能力,属于中等题.5、C【解析】

先判断各函数奇偶性,再找单调性符合题意的即可。【详解】首先可以判断选项D,y=e然后,由图像可知,y=-cosx在(0,+∞)上不单调,y=lg只有选项C:y=1-x【点睛】本题主要考查函数的性质,奇偶性和单调性。6、C【解析】

根据频率分布直方图逐一计算分析.【详解】A:用电量最多的一组有:0.04×10×1000=400人,故正确;B:不低于20度的有:(0.01+0.05)×10×1000=500人,故正确;C:人均用电量:(5×0.01+15×0.04+25×0.03+35×0.01+45×0.01)×10=22,故错误;D:用电量在[30,40)的有:0.01×10×1000=100人,所以P=100故选C.【点睛】本题考查利用频率分布直方图求解相关量,难度较易.频率分布直方图中平均数的求法:每一段的组中值×频率7、B【解析】

利用正弦定理可得,结合三角形内角和定理与诱导公式可得,从而可得结果.【详解】因为,所以由正弦定理可得,,所以,所以是直角三角形.【点睛】本题主要考查正弦定理的应用,属于基础题.弦定理是解三角形的有力工具,其常见用法有以下几种:(1)知道两边和一边的对角,求另一边的对角(一定要注意讨论钝角与锐角);(2)知道两角与一个角的对边,求另一个角的对边;(3)证明化简过程中边角互化;(4)求三角形外接圆半径.8、C【解析】

利用向量共线的性质求得,由充分条件与必要条件的定义可得结论.【详解】因为向量,,所以,即可以得到,不能推出,是“”的必要不充分条件,故选C.【点睛】本题主要考查向量共线的性质、充分条件与必要条件的定义,属于中档题.利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用解答;(2)两向量垂直,利用解答.9、D【解析】

先由余弦定理,结合题中条件,求出,再由,求出,进而可得出三角形的形状.【详解】因为,所以,,所以.又,所以,则的形状为最大角为钝角的等腰三角形.故选D【点睛】本题主要考查三角形的形状的判定,熟记余弦定理即可,属于常考题型.10、B【解析】

结合数量积公式可求得、、的值,代入向量夹角公式即可求解.【详解】设向量与的夹角为,因为的夹角为,且,,所以,,所以,又因为所以,故选B【点睛】本题考查向量的数量积公式,向量模、夹角的求法,考查化简计算的能力,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】

(1)不执行语句,说明不满足条件,,从而得;(2)执行程序,有当时,,只有,.【详解】(1)不执行语句,说明不满足条件,,故有.(2)当时,,只有,.故答案为:(1)(2);【点睛】本题主要考察程序语言,考查对简单程序语言的阅读理解,属于基础题.12、128【解析】

观察数阵可知:前行一共有个数,且第行的最后一个数为,且第行有个数,由此可推断出所在的位置.【详解】因为前行一共有个数,且第行的最后一个数为,又因为,所以在第行,且第45行最后数为,又因为第行有个数,,所以在第列,所以.故答案为:.【点睛】本题考查数列在数阵中的应用,着重考查推理能力,难度一般.分析数列在数阵中的应用问题,可从以下点分析问题:观察每一行数据个数与行号关系,同时注意每一行开始的数据或结尾数据,所有行数据的总个数,注意等差数列的求和公式的运用.13、【解析】试题分析:记两个切点为,则由于,因此四边形是正方形,,圆标准方程为,,,于是圆心直线的距离不大于,,解得.考点:直线和圆的位置关系.14、【解析】

根据绝对值定义去掉绝对值符号后再解不等式.【详解】时,原不等式可化为,,∴;时,原不等式可化为,,∴.综上原不等式的解为.故答案为.【点睛】本题考查解绝对值不等式,解绝对值不等式的常用方法是根据绝对值定义去掉绝对值符号,然后求解.15、【解析】

对进行整理,得到正弦型函数,然后得到其值域,得到答案.【详解】,因为所以的值域为.故答案为:【点睛】本题考查辅助角公式,正弦型函数的值域,属于简单题.16、【解析】试题分析:求圆锥侧面积必须先求圆锥母线,既然已知体积,那么可先求出圆锥的高,再利用圆锥的性质(圆锥的高,底面半径,母线组成直角三角形)可得母线,,,,.考点:圆锥的体积与面积公式,圆锥的性质.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)见解析(Ⅱ)见解析(Ⅲ)见解析【解析】

(Ⅰ)只需证明,,即可得平面;(Ⅱ)可得四边形为平行四边形,,,即可得四边形为平行四边形;(Ⅲ)易得平面,即可得平面平面.【详解】(Ⅰ)∵平面,∴,又,,而,∴平面.(Ⅱ)∵、分别为、的中点,∴,,即四边形为平行四边形,∴,,∴四边形为平行四边形.(Ⅲ)∵,为中点,∴,又∵,且,∴平面,而平面,∴平面平面.【点睛】本题考查了空间点、线、面位置关系,属于基础题.18、(Ⅰ);(Ⅱ)或【解析】

(Ⅰ)由正弦定理得到,在结合三角形内角的性质即可的大小;(Ⅱ)由(Ⅰ)可得的大小,在中,利用余弦定理即可求出边的长.【详解】(Ⅰ)在中,由正弦定理得,所以.因为,所以,所以.(Ⅱ)在中,.在中,由余弦定理,得,即,解得或.经检验,都符合题意.【点睛】本题主要考查正弦定理与余弦定理,属于基础题.19、(1)见解析(2)【解析】

(1)取中点为,连接,由中位线定理证得,即证得平行四边形,于是有,这样就证得线面平行;(2)由等体积法变换后可计算.【详解】证明:(1)取中点为,连接,是平行四边形,平面,平面,∴平面解:(2)是线段中点,则【点睛】本题考查线面平行的判定,考查棱锥的体积.线面平行的证明关键是找到线线平行,而棱锥的体积常常用等积变换,转化顶点与底.20、(1)144;(2)5.【解析】

(1)由同角的三角函数关系,由,可以求出的值,再由面积公式可以求出的值,最后利用平面向量数量积的公式求出的值;(2)由(1)可知的值,再结合已知,可以求出的值,由余弦定理可以求出的值.【详解】(1),又因为的面积是30,所以,因此(2)由(1)可知,与联立,组成方程组:,解得或,不符合题意舍去,由余弦定理可知:.【点睛】本题考查了同角的三角函数关系、三角形面积公式、余弦定理、平面向量的数量积运算,本题求,可以不求出的值也可以,计算如下:21、(1);(2);(3).【解析】

(1)对称轴为,对称轴为,再根据图像平移关系求解;(2)分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论