2025届吉林省汪清六中数学高一下期末统考模拟试题含解析_第1页
2025届吉林省汪清六中数学高一下期末统考模拟试题含解析_第2页
2025届吉林省汪清六中数学高一下期末统考模拟试题含解析_第3页
2025届吉林省汪清六中数学高一下期末统考模拟试题含解析_第4页
2025届吉林省汪清六中数学高一下期末统考模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届吉林省汪清六中数学高一下期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.直线的倾斜角大小()A. B. C. D.2.函数y=sin2x的图象可由函数A.向左平移π3B.向左平移π6C.向右平移π3D.向右平移π63.在中,内角所对的边分别是.已知,,,则A. B. C. D.4.已知,,若对任意的,恒成立,则角的取值范围是A.B.C.D.5.已知向量,若,则()A. B. C. D.6.已知是单位向量,.若向量满足()A. B.C. D.7.中,若,则的形状是()A.等腰三角形 B.等边三角形C.锐角三角形 D.直角三角形8.在四边形中,,,将沿折起,使平面平面,构成三棱锥,如图,则在三棱锥中,下列结论正确的是()A.平面平面B.平面平面C.平面平面D.平面平面9.设的内角所对边的长分别为,若,则角=()A. B.C. D.10.已知数列中,,,且,则的值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,且,.则的值是________.12.函数的值域为__________.13.在棱长均为2的三棱锥中,分别为上的中点,为棱上的动点,则周长的最小值为________.14.过抛物线的焦点F的直线交抛物线于A、B两点,则________.15.化简sin2α+sin2β-sin2αsin2β+cos2αcos2β=______.16.已知,,则________(用反三角函数表示)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角的对边分别为,的面积是30,.(1)求;(2)若,求的值.18.已知公差不为零的等差数列满足:,且成等比数列.(1)求数列的通项公式.(2)记为数列的前项和,是否存在正整数,使得?若存在,请求出的最小值;若不存在,请说明理由.19.某购物中心举行抽奖活动,顾客从装有编号分别为0,1,2,3四个球的抽奖箱中,每次取出1个球,记下编号后放回,连续取两次(假设取到任何一个小球的可能性相同).若取出的两个小球号码相加之和等于5,则中一等奖;若取出的两个小球号码相加之和等于4,则中二等奖;若取出的两个小球号码相加之和等于3,则中三等奖;其它情况不中奖.(Ⅰ)求顾客中三等奖的概率;(Ⅱ)求顾客未中奖的概率.20.已知向量,.(1)当为何值时,与垂直?(2)若,,且三点共线,求的值.21.扇形AOB中心角为,所在圆半径为,它按如图(Ⅰ)(Ⅱ)两种方式有内接矩形CDEF.(1)矩形CDEF的顶点C、D在扇形的半径OB上,顶点E在圆弧AB上,顶点F在半径OA上,设;(2)点M是圆弧AB的中点,矩形CDEF的顶点D、E在圆弧AB上,且关于直线OM对称,顶点C、F分别在半径OB、OA上,设;试研究(1)(2)两种方式下矩形面积的最大值,并说明两种方式下哪一种矩形面积最大?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

化简得到,根据计算得到答案.【详解】直线,即,,,故.故选:.【点睛】本题考查了直线的倾斜角,意在考查学生的计算能力.2、B【解析】

直接利用函数图象平移规律得解.【详解】函数y=sin2x-π可得函数y=sin整理得:y=故选:B【点睛】本题主要考查了函数图象平移规律,属于基础题。3、B【解析】

由已知三边,利用余弦定理可得,结合,为锐角,可得,利用三角形内角和定理即可求的值.【详解】在中,,,,由余弦定理可得:,,故为锐角,可得,,故选.【点睛】本题主要考查利用余弦定理解三角形以及三角形内角和定理的应用.4、B【解析】

由向量的数量积得,对任任意的,恒成立,转化成关于的一次函数,保证在和的函数值同时小于0即可.【详解】,因为对任意的恒成立,则,,解得:,故选B.【点睛】本题考查向量数量积的坐标运算、三角恒等变换及不等式恒成立问题,求解的关键是变换主元的思想,即把不等式看成是关于变量的一次函数,问题则变得简单.5、A【解析】

先根据向量的平行求出的值,再根据向量的加法运算求出答案.【详解】向量,,

解得,

∴,

故选A.【点睛】本题考查了向量的平行和向量的坐标运算,属于基础题.6、A【解析】

因为,,做出图形可知,当且仅当与方向相反且时,取到最大值;最大值为;当且仅当与方向相同且时,取到最小值;最小值为.7、D【解析】

根据正弦定理,得到,进而得到,再由两角和的正弦公式,即可得出结果.【详解】因为,所以,所以,即,所以,又因此,所以,即三角形为直角三角形.故选D【点睛】本题主要考查三角形形状的判断,熟记正弦定理即可,属于常考题型.8、D【解析】

折叠过程中,仍有,根据平面平面可证得平面,从而得到正确的选项.【详解】在直角梯形中,因为为等腰直角三角形,故,所以,故,折起后仍然满足.因为平面平面,平面,平面平面,所以平面,因平面,所以.又因为,,所以平面,因平面,所以平面平面.【点睛】面面垂直的判定可由线面垂直得到,而线面垂直可通过线线垂直得到,注意面中两条直线是相交的.由面面垂直也可得到线面垂直,注意线在面内且线垂直于两个平面的交线.9、B【解析】

试题分析:,由正弦定理可得即;因为,所以,所以,而,所以,故选B.考点:1.正弦定理;2.余弦定理.10、A【解析】

由递推关系,结合,,可求得,,的值,可得数列是一个周期为6的周期数列,进而可求的值。【详解】因为,由,,得;由,,得;由,,得;由,,得;由,,得;由,,得由此推理可得数列是一个周期为6的周期数列,所以,故选A。【点睛】本题考查由递推关系求数列中的项,考查数列周期的判断,属基础题。二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】

.12、【解析】

本题首先可通过三角恒等变换将函数化简为,然后根据的取值范围即可得出函数的值域.【详解】因为,所以.【点睛】本题考查通过三角恒等变换以及三角函数性质求值域,考查二倍角公式以及两角和的正弦公式,考查化归与转化思想,是中档题.13、【解析】

易证明中,且周长为,其中为定值,故只需考虑的最小值即可.【详解】由题,棱长均为2的三棱锥,故该三棱锥的四个面均为正三角形.又因为,故.故.且分别为上的中点,故.故周长为.故只需求的最小值即可.易得当时取得最小值为.故周长的最小值为.故答案为:【点睛】本题主要考查了立体几何中的距离最值问题,需要根据题意找到定量以及变量的最值情况即可.属于中档题.14、【解析】

讨论斜率不存在和斜率存在两种情况,分别计算得到答案.【详解】抛物线的焦点F为,当斜率不存在时,易知,故;当斜率存在时,设,故,即,故,.综上所述:.故答案为:.【点睛】本题考查了抛物线中线段长度问题,意在考查学生的计算能力和转化能力.15、1【解析】原式=sin2α(1-sin2β)+sin2β+cos2αcos2β=sin2αcos2β+cos2αcos2β+sin2β=cos2β(sin2α+cos2α)+sin2β=1.16、【解析】∵,,∴.故答案为三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)144;(2)5.【解析】

(1)由同角的三角函数关系,由,可以求出的值,再由面积公式可以求出的值,最后利用平面向量数量积的公式求出的值;(2)由(1)可知的值,再结合已知,可以求出的值,由余弦定理可以求出的值.【详解】(1),又因为的面积是30,所以,因此(2)由(1)可知,与联立,组成方程组:,解得或,不符合题意舍去,由余弦定理可知:.【点睛】本题考查了同角的三角函数关系、三角形面积公式、余弦定理、平面向量的数量积运算,本题求,可以不求出的值也可以,计算如下:18、(1)(2)存在,最小值是.【解析】

(1)利用等比中项的性质列方程,将已知条件转化为的形式列方程组,解方程组求得,由此求得数列的通项公式.(2)首先求得数列的前项和,由列不等式,解一元二次不等式求得的取值范围,由此求得的最小值.【详解】(1)设等差数列的公差为(),由题意得化简,得.因为,所以,解得所以,即数列的通项公式是().(2)由(1)可得.假设存在正整数,使得,即,即,解得或(舍).所以所求的最小值是.【点睛】本小题主要考查等比中项的性质,考查等差数列通项公式的基本量计算,考查等差数列前项和公式,考查一元二次不等式的解法,属于中档题.19、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)利用列举法列出所有可能,设事件为“顾客中三等奖”,的事件.由古典概型概率计算公式即可求解.(Ⅱ)先分别求得中一等奖、二等奖和三等奖的概率,根据对立事件的概率性质即可求得未中奖的概率.【详解】(Ⅰ)所有基本事件包括共16个设事件为“顾客中三等奖”,事件包含基本事件共4个,所以.(Ⅱ)由题意,中一等奖时“两个小球号码相加之和等于5”,这一事件包括基本事件共2个中二等奖时,“两个小球号码相加之和等于4”,这一事件包括基本事件共3个由(Ⅰ)可知中三等奖的概率为设事件为“顾客未中奖”则由对立事件概率的性质可得所以未中奖的概率为.【点睛】本题考查了古典概型概率的计算方法,对立事件概率性质的应用,属于基础题.20、(1);(2).【解析】

(1)利用坐标运算表示出与;根据向量垂直可知数量积为零,从而构造方程求得结果;(2)利用坐标运算表示出,根据三点共线可知,根据向量共线的坐标表示可构造方程求得结果.【详解】(1),与垂直,解得:(2)三点共线,,解得:【点睛】本题考查平面向量的坐标运算,涉及到向量平行和垂直的坐标表示;关键是能够明确两向量垂直则数量积等于零,能够利用平行关系表示三点共线.21、方式一最大值【解析】

试题分析:(1)运用公式时要注意审查公式成立的条件,要注意和差、倍角的相对性,要注意升幂、降幂的灵活运用;(2)重

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论