版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高三上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.数列{an}是等差数列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,则实数λ的最大值为()A. B. C. D.2.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是()A.36cm3 B.48cm3 C.60cm3 D.72cm33.设是双曲线的左、右焦点,若双曲线右支上存在一点,使(为坐标原点),且,则双曲线的离心率为()A. B. C. D.4.定义在R上的偶函数f(x)满足f(x+2)=f(x),当x∈[﹣3,﹣2]时,f(x)=﹣x﹣2,则()A. B.f(sin3)<f(cos3)C. D.f(2020)>f(2019)5.若平面向量,满足,则的最大值为()A. B. C. D.6.抛掷一枚质地均匀的硬币,每次正反面出现的概率相同,连续抛掷5次,至少连续出现3次正面朝上的概率是()A. B. C. D.7.已知向量,,当时,()A. B. C. D.8.设为锐角,若,则的值为()A. B. C. D.9.某人2018年的家庭总收人为元,各种用途占比如图中的折线图,年家庭总收入的各种用途占比统计如图中的条形图,已知年的就医费用比年的就医费用增加了元,则该人年的储畜费用为()A.元 B.元 C.元 D.元10.若表示不超过的最大整数(如,,),已知,,,则()A.2 B.5 C.7 D.811.已知,是椭圆与双曲线的公共焦点,是它们的一个公共点,且,椭圆的离心率为,双曲线的离心率为,若,则的最小值为()A. B. C.8 D.612.已知等边△ABC内接于圆:x2+y2=1,且P是圆τ上一点,则的最大值是()A. B.1 C. D.2二、填空题:本题共4小题,每小题5分,共20分。13.已知,则______,______.14.设、、、、是表面积为的球的球面上五点,四边形为正方形,则四棱锥体积的最大值为__________.15.函数的最大值与最小正周期相同,则在上的单调递增区间为______.16.两光滑的曲线相切,那么它们在公共点处的切线方向相同.如图所示,一列圆(an>0,rn>0,n=1,2…)逐个外切,且均与曲线y=x2相切,若r1=1,则a1=___,rn=______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)记为数列的前项和,N.(1)求;(2)令,证明数列是等比数列,并求其前项和.18.(12分)如图,湖中有一个半径为千米的圆形小岛,岸边点与小岛圆心相距千米,为方便游人到小岛观光,从点向小岛建三段栈道,,,湖面上的点在线段上,且,均与圆相切,切点分别为,,其中栈道,,和小岛在同一个平面上.沿圆的优弧(圆上实线部分)上再修建栈道.记为.用表示栈道的总长度,并确定的取值范围;求当为何值时,栈道总长度最短.19.(12分)已知,其中.(1)当时,设函数,求函数的极值.(2)若函数在区间上递增,求的取值范围;(3)证明:.20.(12分)如图,在三棱锥中,平面平面,,.点,,分别为线段,,的中点,点是线段的中点.(1)求证:平面.(2)判断与平面的位置关系,并证明.21.(12分)已知在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,直线的极坐标方程为.(1)求直线的直角坐标方程;(2)求曲线上的点到直线距离的最小值和最大值.22.(10分)已知函数的图象在处的切线方程是.(1)求的值;(2)若函数,讨论的单调性与极值;(3)证明:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
利用等差数列通项公式推导出λ,由d∈[1,2],能求出实数λ取最大值.【详解】∵数列{an}是等差数列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,∴1+3d+λ(1+9d)+1+15d=15,解得λ,∵d∈[1,2],λ2是减函数,∴d=1时,实数λ取最大值为λ.故选D.【点睛】本题考查实数值的最大值的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.2、B【解析】试题分析:该几何体上面是长方体,下面是四棱柱;长方体的体积,四棱柱的底面是梯形,体积为,因此总的体积.考点:三视图和几何体的体积.3、D【解析】
利用向量运算可得,即,由为的中位线,得到,所以,再根据双曲线定义即可求得离心率.【详解】取的中点,则由得,即;在中,为的中位线,所以,所以;由双曲线定义知,且,所以,解得,故选:D【点睛】本题综合考查向量运算与双曲线的相关性质,难度一般.4、B【解析】
根据函数的周期性以及x∈[﹣3,﹣2]的解析式,可作出函数f(x)在定义域上的图象,由此结合选项判断即可.【详解】由f(x+2)=f(x),得f(x)是周期函数且周期为2,先作出f(x)在x∈[﹣3,﹣2]时的图象,然后根据周期为2依次平移,并结合f(x)是偶函数作出f(x)在R上的图象如下,选项A,,所以,选项A错误;选项B,因为,所以,所以f(sin3)<f(﹣cos3),即f(sin3)<f(cos3),选项B正确;选项C,,所以,即,选项C错误;选项D,,选项D错误.故选:B.【点睛】本题考查函数性质的综合运用,考查函数值的大小比较,考查数形结合思想,属于中档题.5、C【解析】
可根据题意把要求的向量重新组合成已知向量的表达,利用向量数量积的性质,化简为三角函数最值.【详解】由题意可得:,,,故选:C【点睛】本题主要考查根据已知向量的模求未知向量的模的方法技巧,把要求的向量重新组合成已知向量的表达是本题的关键点.本题属中档题.6、A【解析】
首先求出样本空间样本点为个,再利用分类计数原理求出三个正面向上为连续的3个“1”的样本点个数,再求出重复数量,可得事件的样本点数,根据古典概型的概率计算公式即可求解.【详解】样本空间样本点为个,具体分析如下:记正面向上为1,反面向上为0,三个正面向上为连续的3个“1”,有以下3种位置1____,__1__,____1.剩下2个空位可是0或1,这三种排列的所有可能分别都是,但合并计算时会有重复,重复数量为,事件的样本点数为:个.故不同的样本点数为8个,.故选:A【点睛】本题考查了分类计数原理与分步计数原理,古典概型的概率计算公式,属于基础题7、A【解析】
根据向量的坐标运算,求出,,即可求解.【详解】,.故选:A.【点睛】本题考查向量的坐标运算、诱导公式、二倍角公式、同角间的三角函数关系,属于中档题.8、D【解析】
用诱导公式和二倍角公式计算.【详解】.故选:D.【点睛】本题考查诱导公式、余弦的二倍角公式,解题关键是找出已知角和未知角之间的联系.9、A【解析】
根据2018年的家庭总收人为元,且就医费用占得到就医费用,再根据年的就医费用比年的就医费用增加了元,得到年的就医费用,然后由年的就医费用占总收人,得到2019年的家庭总收人再根据储畜费用占总收人求解.【详解】因为2018年的家庭总收人为元,且就医费用占所以就医费用因为年的就医费用比年的就医费用增加了元,所以年的就医费用元,而年的就医费用占总收人所以2019年的家庭总收人为而储畜费用占总收人所以储畜费用:故选:A【点睛】本题主要考查统计中的折线图和条形图的应用,还考查了建模解模的能力,属于基础题.10、B【解析】
求出,,,,,,判断出是一个以周期为6的周期数列,求出即可.【详解】解:.,∴,,,同理可得:;;.;,,…….∴.故是一个以周期为6的周期数列,则.故选:B.【点睛】本题考查周期数列的判断和取整函数的应用.11、C【解析】
由椭圆的定义以及双曲线的定义、离心率公式化简,结合基本不等式即可求解.【详解】设椭圆的长半轴长为,双曲线的半实轴长为,半焦距为,则,,设由椭圆的定义以及双曲线的定义可得:,则当且仅当时,取等号.故选:C.【点睛】本题主要考查了椭圆的定义以及双曲线的定义、离心率公式,属于中等题.12、D【解析】
如图所示建立直角坐标系,设,则,计算得到答案.【详解】如图所示建立直角坐标系,则,,,设,则.当,即时等号成立.故选:.【点睛】本题考查了向量的计算,建立直角坐标系利用坐标计算是解题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
利用两角和的正切公式结合可得出的方程,即可求出的值,然后利用二倍角的正、余弦公式结合弦化切思想求出和的值,进而利用两角差的余弦公式求出的值.【详解】,,,.故答案为:;.【点睛】本题主要考查三角函数值的计算,考查两角和的正切公式、两角差的余弦公式、二倍角的正弦公式、余弦公式以及弦化切思想的应用,难度不大.14、【解析】
根据球的表面积求得球的半径,设球心到四棱锥底面的距离为,求得四棱锥的表达式,利用基本不等式求得体积的最大值.【详解】由已知可得球的半径,设球心到四棱锥底面的距离为,棱锥的高为,底面边长为,的体积,当且仅当时等号成立.故答案为:【点睛】本小题主要考查球的表面积有关计算,考查球的内接四棱锥体积的最值的求法,属于中档题.15、【解析】
利用三角函数的辅助角公式进行化简,求出函数的解析式,结合三角函数的单调性进行求解即可.【详解】∵,则函数的最大值为2,周期,的最大值与最小正周期相同,,得,则,当时,,则当时,得,即函数在,上的单调递增区间为,故答案为:.【点睛】本题考查三角函数的性质、单调区间,利用辅助角公式求出函数的解析式是解决本题的关键,同时要注意单调区间为定义域的一个子区间.16、【解析】
第一空:将圆与联立,利用计算即可;第二空:找到两外切的圆的圆心与半径的关系,再将与联立,得到,与结合可得为等差数列,进而可得.【详解】当r1=1时,圆,与联立消去得,则,解得;由图可知当时,①,将与联立消去得,则,整理得,代入①得,整理得,则.故答案为:;.【点睛】本题是抛物线与圆的关系背景下的数列题,关键是找到圆心和半径的关系,建立递推式,由递推式求通项公式,综合性较强,是一道难度较大的题目.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见详解,【解析】
(1)根据,可得,然后作差,可得结果.(2)根据(1)的结论,用取代,得到新的式子,然后作差,可得结果,最后根据等比数列的前项和公式,可得结果.【详解】(1)由①,则②②-①可得:所以(2)由(1)可知:③则④④-③可得:则,且令,则,所以数列是首项为,公比为的等比数列所以【点睛】本题主要考查递推公式以及之间的关系的应用,考验观察能力以及分析能力,属中档题.18、,;当时,栈道总长度最短.【解析】
连,,由切线长定理知:,,,,即,,则,,进而确定的取值范围;根据求导得,利用增减性算出,进而求得取值.【详解】解:连,,由切线长定理知:,,,又,,故,则劣弧的长为,因此,优弧的长为,又,故,,即,,所以,,,则;,,其中,,-0+单调递减极小值单调递增故时,所以当时,栈道总长度最短.【点睛】本题主要考查导数在函数当中的应用,属于中档题.19、(1)极大值,无极小值;(2).(3)见解析【解析】
(1)先求导,根据导数和函数极值的关系即可求出;(2)先求导,再函数在区间上递增,分离参数,构造函数,求出函数的最值,问题得以解决;(3)取得到,取,可得,累加和根据对数的运算性和放缩法即可证明.【详解】解:(1)当时,设函数,则令,解得当时,,当时,所以在上单调递增,在上单调递减所以当时,函数取得极大值,即极大值为,无极小值;(2)因为,所以,因为在区间上递增,所以在上恒成立,所以在区间上恒成立.当时,在区间上恒成立,当时,,设,则在区间上恒成立.所以在单调递增,则,所以,即综上所述.(3)由(2)可知当时,函数在区间上递增,所以,即,取,则.所以所以【点睛】此题考查了参数的取值范围以及恒成立的问题,以及不等式的证明,构造函数是关键,属于较难题.20、(1)见解析(2)平面.见解析【解析】
(1)要证平面,只需证明,,即可求得答案;(2)连接交于点,连接,根据已知条件求证,即可判断与平面的位置关系,进而求得答案.【详解】(1),为边的中点,,平面平面,平面平面,平面,平面,,在内,,为所在边的中点,,又,,平面.(2)判断可知,平面,证明如下:连接交于点,连接.、、分别为边、、的中点,.又是的重心,,,平面,平面,平面.【点睛】本题主要考查了求证线面垂直和线面平行,解题关键是掌握线面垂直判定定理和线面平行判断定理,考查了分析能力和空间想象能力,属于中档题.21、(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑风力发电工程架子工合同
- 临时物业管理员协议
- 宾馆租赁合同:企业员工培训
- 庭院装修工程施工合同
- 建筑项目合同安全检查
- 文物科普教育活动保护协议
- 临时出纳工作合同财务兼职
- 行纪合同范本指南工具
- 澳门(2024年-2025年小学五年级语文)统编版小升初模拟((上下)学期)试卷及答案
- 九月份开学典礼的致辞范文(5篇)
- 沪科版(2024新版)八年级全册物理第一学期期中学情评估测试卷(含答案)
- 浙江省宁波市余姚市兰江中学2022-2023学年七年级上学期12月月考数学试题
- 2024年艾滋病防治知识竞赛考试题库200题(含答案)
- 2024至2030年中国高低压开关柜行业市场全景分析及投资策略研究报告
- 《新时代公民道德建设实施纲要》、《新时代爱国主义教育实施纲要》知识竞赛试题库55题(含答案)
- 软装验收合同范本
- 2024年国家开放大学电大《职业素质》形成性考核四
- 工厂安全培训考试题(完美)
- Office高效办公智慧树知到期末考试答案章节答案2024年西安欧亚学院
- 《建筑外墙外保温系统修缮标准 JGJ376-2015》
- 2024-2025学年牛津版小学六年级英语上册期中检查试题及答案
评论
0/150
提交评论