版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省兰州市七里河区重点名校2023-2024学年中考五模数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.把边长相等的正六边形ABCDEF和正五边形GHCDL的CD边重合,按照如图所示的方式叠放在一起,延长LG交AF于点P,则∠APG=()A.141° B.144° C.147° D.150°2.如图,BD为⊙O的直径,点A为弧BDC的中点,∠ABD=35°,则∠DBC=()A.20° B.35° C.15° D.45°3.下列运算正确的是()A.a2•a4=a8 B.2a2+a2=3a4 C.a6÷a2=a3 D.(ab2)3=a3b64.如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为(
)A.35° B.45° C.55° D.65°5.有6个相同的立方体搭成的几何体如图所示,则它的主视图是()A. B. C. D.6.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.① B.② C.③ D.④7.下列运算结果是无理数的是()A.3× B. C. D.8.如图所示的正方体的展开图是()A. B. C. D.9.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A. B.C. D.10.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15 B.13,15 C.13,20 D.15,1511.如果两圆只有两条公切线,那么这两圆的位置关系是()A.内切 B.外切 C.相交 D.外离12.一组数据3、2、1、2、2的众数,中位数,方差分别是()A.2,1,0.4 B.2,2,0.4C.3,1,2 D.2,1,0.2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知关于x的方程x2+kx﹣3=0的一个根是x=﹣1,则另一根为_____.14.若与是同类项,则的立方根是.15.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=26,CD=24,那么sin∠OCE=▲.16.已知一块等腰三角形钢板的底边长为60cm,腰长为50cm,能从这块钢板上截得得最大圆得半径为________cm17.因式分解:3x2-6xy+3y2=______.18.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2019次运动后,动点P的坐标是_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在△ABC中,∠C=90°,BC=4,AC=1.点P是斜边AB上一点,过点P作PM⊥AB交边AC或BC于点M.又过点P作AC的平行线,与过点M的PM的垂线交于点N.设边AP=x,△PMN与△ABC重合部分图形的周长为y.(1)AB=.(2)当点N在边BC上时,x=.(1)求y与x之间的函数关系式.(4)在点N位于BC上方的条件下,直接写出过点N与△ABC一个顶点的直线平分△ABC面积时x的值.20.(6分)如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.(1)试说明DF是⊙O的切线;(2)若AC=3AE,求tanC.21.(6分)一个不透明的袋子中,装有标号分别为1、-1、2的三个小球,他们除标号不同外,其余都完全相同;搅匀后,从中任意取一个球,标号为正数的概率是;搅匀后,从中任取一个球,标号记为k,然后放回搅匀再取一个球,标号记为b,求直线y=kx+b经过一、二、三象限的概率.22.(8分)抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,3)点.(1)求出m的值并画出这条抛物线;(2)求它与x轴的交点和抛物线顶点的坐标;(3)x取什么值时,抛物线在x轴上方?(4)x取什么值时,y的值随x值的增大而减小?23.(8分)如图,二次函数y=x2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点坐标是(8,6).求二次函数的解析式;求函数图象的顶点坐标及D点的坐标;二次函数的对称轴上是否存在一点C,使得△CBD的周长最小?若C点存在,求出C点的坐标;若C点不存在,请说明理由.24.(10分)先化简,再求值:(x+2y)(x﹣2y)+(20xy3﹣8x2y2)÷4xy,其中x=2018,y=1.25.(10分)如图,AE∥FD,AE=FD,B、C在直线EF上,且BE=CF,(1)求证:△ABE≌△DCF;(2)试证明:以A、B、D、C为顶点的四边形是平行四边形.26.(12分)在平面直角坐标系xOy中,抛物线y=mx2﹣2mx﹣3(m≠0)与x轴交于A(3,0),B两点.(1)求抛物线的表达式及点B的坐标;(2)当﹣2<x<3时的函数图象记为G,求此时函数y的取值范围;(3)在(2)的条件下,将图象G在x轴上方的部分沿x轴翻折,图象G的其余部分保持不变,得到一个新图象M.若经过点C(4.2)的直线y=kx+b(k≠0)与图象M在第三象限内有两个公共点,结合图象求b的取值范围.27.(12分)如图,△DEF是由△ABC通过一次旋转得到的,请用直尺和圆规画出旋转中心.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解析】
先根据多边形的内角和公式分别求得正六边形和正五边形的每一个内角的度数,再根据多边形的内角和公式求得∠APG的度数.【详解】(6﹣2)×180°÷6=120°,(5﹣2)×180°÷5=108°,∠APG=(6﹣2)×180°﹣120°×3﹣108°×2=720°﹣360°﹣216°=144°,故选B.【点睛】本题考查了多边形内角与外角,关键是熟悉多边形内角和定理:(n﹣2)•180(n≥3)且n为整数).2、A【解析】
根据∠ABD=35°就可以求出的度数,再根据,可以求出,因此就可以求得的度数,从而求得∠DBC【详解】解:∵∠ABD=35°,∴的度数都是70°,∵BD为直径,∴的度数是180°﹣70°=110°,∵点A为弧BDC的中点,∴的度数也是110°,∴的度数是110°+110°﹣180°=40°,∴∠DBC==20°,故选:A.【点睛】本题考查了等腰三角形性质、圆周角定理,主要考查学生的推理能力.3、D【解析】根据同底数幂的乘法,合并同类项,同底数幂的除法,幂的乘方与积的乘方运算法则逐一计算作出判断:A、a2•a4=a6,故此选项错误;B、2a2+a2=3a2,故此选项错误;C、a6÷a2=a4,故此选项错误;D、(ab2)3=a3b6,故此选项正确..故选D.考点:同底数幂的乘法,合并同类项,同底数幂的除法,幂的乘方与积的乘方.4、C【解析】分析:由同弧所对的圆周角相等可知∠B=∠ADC=35°;而由圆周角的推论不难得知∠ACB=90°,则由∠CAB=90°-∠B即可求得.详解:∵∠ADC=35°,∠ADC与∠B所对的弧相同,∴∠B=∠ADC=35°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB=90°-∠B=55°,故选C.点睛:本题考查了同弧所对的圆周角相等以及直径所对的圆周角是直角等知识.5、C【解析】试题分析:根据主视图是从正面看得到的图形,可得答案.解:从正面看第一层三个小正方形,第二层左边一个小正方形,右边一个小正方形.故选C.考点:简单组合体的三视图.6、A【解析】
由平面图形的折叠及正方体的表面展开图的特点解题.【详解】将图1的正方形放在图2中的①的位置出现重叠的面,所以不能围成正方体,故选A.【点睛】本题考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意:只要有“田”字格的展开图都不是正方体的表面展开图.7、B【解析】
根据二次根式的运算法则即可求出答案.【详解】A选项:原式=3×2=6,故A不是无理数;B选项:原式=,故B是无理数;C选项:原式==6,故C不是无理数;D选项:原式==12,故D不是无理数故选B.【点睛】考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.8、A【解析】
有些立体图形是由一些平面图形围成的,将它们的表面适当的剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.根据立体图形表面的图形相对位置可以判断.【详解】把各个展开图折回立方体,根据三个特殊图案的相对位置关系,可知只有选项A正确.故选A【点睛】本题考核知识点:长方体表面展开图.解题关键点:把展开图折回立方体再观察.9、B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.10、D【解析】
将五个答题数,从小打到排列,5个数中间的就是中位数,出现次数最多的是众数.【详解】将这五个答题数排序为:10,13,15,15,20,由此可得中位数是15,众数是15,故选D.【点睛】本题考查中位数和众数的概念,熟记概念即可快速解答.11、C【解析】
两圆内含时,无公切线;两圆内切时,只有一条公切线;两圆外离时,有4条公切线;两圆外切时,有3条公切线;两圆相交时,有2条公切线.【详解】根据两圆相交时才有2条公切线.故选C.【点睛】本题考查了圆与圆的位置关系.熟悉两圆的不同位置关系中的外公切线和内公切线的条数.12、B【解析】试题解析:从小到大排列此数据为:1,2,2,2,3;数据2出现了三次最多为众数,2处在第3位为中位数.平均数为(3+2+1+2+2)÷5=2,方差为[(3-2)2+3×(2-2)2+(1-2)2]=0.1,即中位数是2,众数是2,方差为0.1.故选B.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1【解析】
设另一根为x2,根据一元二次方程根与系数的关系得出-1•x2=-1,即可求出答案.【详解】设方程的另一个根为x2,则-1×x2=-1,解得:x2=1,故答案为1.【点睛】本题考查了一元二次方程根与系数的关系:如果x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,那么x1+x2=-,x1x2=.14、2.【解析】试题分析:若与是同类项,则:,解方程得:.∴=2﹣3×(﹣2)=8.8的立方根是2.故答案为2.考点:2.立方根;2.合并同类项;3.解二元一次方程组;4.综合题.15、【解析】垂径定理,勾股定理,锐角三角函数的定义。【分析】如图,设AB与CD相交于点E,则根据直径AB=26,得出半径OC=13;由CD=24,CD⊥AB,根据垂径定理得出CE=12;在Rt△OCE中,利用勾股定理求出OE=5;再根据正弦函数的定义,求出sin∠OCE的度数:。16、15【解析】如图,等腰△ABC的内切圆⊙O是能从这块钢板上截得的最大圆,则由题意可知:AD和BF是△ABC的角平分线,AB=AC=50cm,BC=60cm,∴∠ADB=90°,BD=CD=30cm,∴AD=(cm),连接圆心O和切点E,则∠BEO=90°,又∵OD=OE,OB=OB,∴△BEO≌△BDO,∴BE=BD=30cm,∴AE=AB-BE=50-30=20cm,设OD=OE=x,则AO=40-x,在Rt△AOE中,由勾股定理可得:,解得:(cm).即能截得的最大圆的半径为15cm.故答案为:15.点睛:(1)三角形中能够裁剪出的最大的圆是这个三角形的内切圆;(2)若三角形的三边长分别为a、b、c,面积为S,内切圆的半径为r,则.17、3(x﹣y)1【解析】试题分析:原式提取3,再利用完全平方公式分解即可,得到3x1﹣6xy+3y1=3(x1﹣1xy+y1)=3(x﹣y)1.考点:提公因式法与公式法的综合运用18、(2019,2)【解析】
分析点P的运动规律,找到循环次数即可.【详解】分析图象可以发现,点P的运动每4次位置循环一次.每循环一次向右移动四个单位.∴2019=4×504+3当第504循环结束时,点P位置在(2016,0),在此基础之上运动三次到(2019,2)故答案为(2019,2).【点睛】本题是规律探究题,解题关键是找到动点运动过程中,每运动多少次形成一个循环.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)2;(2);(1)详见解析;(4)满足条件的x的值为.【解析】
(1)根据勾股定理可以直接求出(2)先证明四边形PAMN是平行四边形,再根据三角函数值求解(1)分情况根据t的大小求出不同的函数关系式(4)不同条件下:当点G是AC中点时和当点D是AB中点时,根据相似三角形的性质求解.【详解】解:(1)在中,,故答案为2.(2)如图1中,∴四边形PAMN是平行四边形,当点在上时,,.(1)①当时,如图1,.②当时,如图2,y③当时,如图1,(4)如图4中,当点是中点时,满足条件.如图2中,当点是中点时,满足条件..综上所述,满足条件的x的值为或.【点睛】此题重点考查学生对一次函数的应用,勾股定理,平行四边形的判定,相似三角形的性质和三角函数值的综合应用能力,熟练掌握勾股定理和三角函数值的解法是解题的关键.20、(1)详见解析;(2)【解析】
(1)连接OD,根据等边对等角得出∠B=∠ODB,∠B=∠C,得出∠ODB=∠C,证得OD∥AC,证得OD⊥DF,从而证得DF是⊙O的切线;(2)连接BE,AB是直径,∠AEB=90°,根据勾股定理得出BE=2AE,CE=4AE,然后在Rt△BEC中,即可求得tanC的值.【详解】(1)连接OD,∵OB=OD,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠ODB=∠C,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∴DF是⊙O的切线;(2)连接BE,∵AB是直径,∴∠AEB=90°,∵AB=AC,AC=3AE,∴AB=3AE,CE=4AE,∴BE=,在RT△BEC中,tanC=.21、(1);(2)【解析】【分析】(1)直接运用概率的定义求解;(2)根据题意确定k>0,b>0,再通过列表计算概率.【详解】解:(1)因为1、-1、2三个数中由两个正数,所以从中任意取一个球,标号为正数的概率是.(2)因为直线y=kx+b经过一、二、三象限,所以k>0,b>0,又因为取情况:kb1-1211,11,-11,2-1-1,1-1,-1-1.222,12,-12,2共9种情况,符合条件的有4种,所以直线y=kx+b经过一、二、三象限的概率是.【点睛】本题考核知识点:求规概率.解题关键:把所有的情况列出,求出要得到的情况的种数,再用公式求出.22、(1)m=3;(2)(-1,0),(3,0)【解析】试题分析:(1)由抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,1)得:m=1.∴抛物线为y=﹣x2+2x+1=﹣(x﹣1)2+2.列表得:
X
﹣1
0
1
2
1
y
0
1
2
1
0
图象如下.(2)由﹣x2+2x+1=0,得:x1=﹣1,x2=1.∴抛物线与x轴的交点为(﹣1,0),(1,0).∵y=﹣x2+2x+1=﹣(x﹣1)2+2∴抛物线顶点坐标为(1,2).(1)由图象可知:当﹣1<x<1时,抛物线在x轴上方.(2)由图象可知:当x>1时,y的值随x值的增大而减小考点:二次函数的运用23、(1)y=x1﹣4x+6;(1)D点的坐标为(6,0);(3)存在.当点C的坐标为(4,1)时,△CBD的周长最小【解析】
(1)只需运用待定系数法就可求出二次函数的解析式;(1)只需运用配方法就可求出抛物线的顶点坐标,只需令y=0就可求出点D的坐标;(3)连接CA,由于BD是定值,使得△CBD的周长最小,只需CD+CB最小,根据抛物线是轴对称图形可得CA=CD,只需CA+CB最小,根据“两点之间,线段最短”可得:当点A、C、B三点共线时,CA+CB最小,只需用待定系数法求出直线AB的解析式,就可得到点C的坐标.【详解】(1)把A(1,0),B(8,6)代入,得解得:∴二次函数的解析式为;(1)由,得二次函数图象的顶点坐标为(4,﹣1).令y=0,得,解得:x1=1,x1=6,∴D点的坐标为(6,0);(3)二次函数的对称轴上存在一点C,使得的周长最小.连接CA,如图,∵点C在二次函数的对称轴x=4上,∴xC=4,CA=CD,∴的周长=CD+CB+BD=CA+CB+BD,根据“两点之间,线段最短”,可得当点A、C、B三点共线时,CA+CB最小,此时,由于BD是定值,因此的周长最小.设直线AB的解析式为y=mx+n,把A(1,0)、B(8,6)代入y=mx+n,得解得:∴直线AB的解析式为y=x﹣1.当x=4时,y=4﹣1=1,∴当二次函数的对称轴上点C的坐标为(4,1)时,的周长最小.【点睛】本题考查了(1)二次函数综合题;(1)待定系数法求一次函数解析式;(3)二次函数的性质;(4)待定系数法求二次函数解析式;(5)线段的性质:(6)两点之间线段最短.24、(x﹣y)2;2.【解析】
首先利用多项式的乘法法则以及多项式与单项式的除法法则计算,然后合并同类项即可化简,然后代入数值计算即可.【详解】原式=x2﹣4y2+4xy(5y2-2xy)÷4xy=x2﹣4y2+5y2﹣2xy=x2﹣2xy+y2,=(x﹣y)2,当x=2028,y=2时,原式=(2028﹣2)2=(﹣2)2=2.【点睛】本题考查的是整式的混合运算,正确利用多项式的乘法法则以及合并同类项法则是解题的关键.25、(1)证明见解析;(2)证明见解析【解析】(1)根据平行线性质求出∠B=∠C,等量相减求出BE=CF,根据SAS推出两三角形全等即可;(2)借助(1)中结论△ABE≌△DCF,可证出AE平行且等于DF,即可证出结论.证明:(1)如图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 行业内保安服务标准的探索与制定计划
- 行业发展战略开展技术交流合作计划
- 旅游地产开发合作协议三篇
- 水务行业的数字经济应用计划
- 新学年教学工作目标计划
- 第三方财产保护协议书范文
- 传统电能质量分析与改善措施
- 离婚协议书范文无财产2022标准版
- 一次性补尝协议书范文范本
- 儿童学前儿童科学教育概述-教案
- 安徽省亳州市黉学英才中学2024-2025学年七年级上学期期中生物学试题(含答案)
- 期中综合检测(1-4单元)(试题)- 2024-2025学年二年级上册数学人教版
- 2024-2030年全球及中国IT服务管理(ITSM)软件行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 沪粤版初中物理八上八年级上学期物理期中试卷(解析版)
- 江苏省苏州市苏州工业园区苏州工业园区景城学校2023-2024学年八年级上学期期中数学试题(解析版)
- 高中挺身式跳远-教案
- 2024年消防宣传月知识竞赛考试题库500题(含答案)
- 国开2024年秋《机电控制工程基础》形考任务1答案
- 食品安全工作操作流程(5篇)
- 《中华民族大团结》(初中)-第10课-伟大梦想-共同追求-教案
- 《非计划性拔管》课件
评论
0/150
提交评论