江西省四校协作体2025届高一数学第二学期期末经典模拟试题含解析_第1页
江西省四校协作体2025届高一数学第二学期期末经典模拟试题含解析_第2页
江西省四校协作体2025届高一数学第二学期期末经典模拟试题含解析_第3页
江西省四校协作体2025届高一数学第二学期期末经典模拟试题含解析_第4页
江西省四校协作体2025届高一数学第二学期期末经典模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省四校协作体2025届高一数学第二学期期末经典模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设实数满足约束条件,则的最大值为()A. B.4 C.5 D.2.已知向量,,若,则实数a的值为A. B.2或 C.或1 D.3.设集合,,,则()A. B. C. D.4.若,则的最小值为()A. B. C.3 D.25.已知函数在时取最大值,在是取最小值,则以下各式:①;②;③可能成立的个数是()A.0 B.1 C.2 D.36.设有直线和平面,则下列四个命题中,正确的是()A.若m∥α,n∥α,则m∥n B.若m⊂α,n⊂α,m∥β,l∥β,则α∥βC.若α⊥β,m⊂α,则m⊥β D.若α⊥β,m⊥β,m⊄α,则m∥α7.已知则的最小值是()A. B.4 C. D.58.不等式的解集为()A.(-4,1) B.(-1,4)C.(-∞,-4)∪(1,+∞) D.(-∞,-1)∪(4,+∞)9.已知a,b,c为实数,则下列结论正确的是()A.若ac>bc>0,则a>b B.若a>b>0,则ac>bcC.若ac2>bc2,则a>b D.若a>b,则ac2>bc210.已知集合,,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量满足,则与的夹角的余弦值为__________.12.在中,若,,,则________.13.的值为________.14.函数的值域是______.15.将正整数按下图方式排列,2019出现在第行第列,则______;12345678910111213141516………16.方程在区间上的解为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在直角坐标系中,,,点在直线上.(1)若三点共线,求点的坐标;(2)若,求点的坐标.18.已知,.(1)求的值;(2)求的值.19.已知.(1)若三点共线,求实数的值;(2)证明:对任意实数,恒有成立.20.已知为等差数列,且,.求的通项公式;若等比数列满足,,求的前n项和公式.21.已知圆,直线平分圆.(1)求直线的方程;(2)设,圆的圆心是点,对圆上任意一点,在直线上是否存在与点不重合的点,使是常数,若存在,求出点坐标;若不存在,说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

作出可行域,作出目标函数对应的直线,平移该直线可得最优解.【详解】作出可行域,如图内部(含边界),作直线,向上平移直线,增大,当直线过点时,得最大值为,故选:A.【点睛】本题考查简单的线性规划,解题关键是作出可行域和目标函数对应的直线.2、C【解析】

根据题意,由向量平行的坐标表示公式可得,解可得a的值,即可得答案.【详解】根据题意,向量,,若,则有,解可得或1;故选C.【点睛】本题考查向量平行的坐标表示方法,熟记平行的坐标表示公式得到关于a的方程是关键,是基础题3、A【解析】因为,所以,又因为,,故选A.4、A【解析】

由题意知,,,再由,进而利用基本不等式求最小值即可.【详解】由题意,,因为,所以,,所以,当且仅当,即时,取等号.故选:A.【点睛】本题考查利用基本不等式求最值,考查学生的计算求解能力,属于基础题.5、A【解析】

由余弦函数性质得,(),解出后,计算,可知三个等式都不可能成立.【详解】由题意,(),解得,,,,三个都不可能成立,正确个数为1.故选A.【点睛】本题考查余弦函数的图象与性质,解题时要注意对中的整数要用不同的字母表示,否则可能出现遗漏,出现错误.6、D【解析】

在A中,m与n相交、平行或异面;在B中,α与β相交或平行;在C中,m⊥β或m∥β或m与β相交;在D中,由直线与平面垂直的性质与判定定理可得m∥α.【详解】由直线m、n,和平面α、β,知:对于A,若m∥α,n∥α,则m与n相交、平行或异面,故A错误;对于B,若m⊂α,n⊂α,m∥β,n∥β,则α∥β或α与β相交,故B错误;对于中,若α⊥β,α⊥β,m⊂α,则m⊥β或m∥β或m与β相交,故C错误;对于D,若α⊥β,m⊥β,m⊄α,则由直线与平面垂直的性质与判定定理得m∥α,故D正确.故选D.【点睛】本题考查了命题真假的判断问题,考查了空间线线、线面、面面的位置关系的判定定理及推论的应用,体现符号语言与图形语言的相互转化,是中档题.7、C【解析】

由题意结合均值不等式的结论即可求得的最小值,注意等号成立的条件.【详解】由题意可得:,当且仅当时等号成立.即的最小值是.故选:C.【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.8、A【解析】

将原不等式化简并因式分解,由此求得不等式的解集.【详解】原不等式等价于,即,解得.故选A.【点睛】本小题主要考查一元二次不等式的解法,属于基础题.9、C【解析】

本题可根据不等式的性质以及运用特殊值法进行代入排除即可得到正确结果.【详解】由题意,可知:对于A中,可设,很明显满足,但,所以选项A不正确;对于B中,因为不知道的正负情况,所以不能直接得出,所以选项B不正确;对于C中,因为,所以,所以,所以选项C正确;对于D中,若,则不能得到,所以选项D不正确.故选:C.【点睛】本题主要考查了不等式性质的应用以及特殊值法的应用,着重考查了推理能力,属于基础题.10、D【解析】依题意,故.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由得,结合条件,即可求出,的值,代入求夹角公式,即可求解.【详解】由得与的夹角的余弦值为.【点睛】本题考查数量积的定义,公式的应用,求夹角公式的应用,计算量较大,属基础题.12、2;【解析】

利用余弦定理可构造关于的方程,解方程求得结果.【详解】由余弦定理得:解得:或(舍)本题正确结果:【点睛】本题考查利用余弦定理解三角形,属于基础题.13、【解析】

利用同角三角函数的基本关系式、二倍角公式,结合根式运算,化简求得表达式的值.【详解】依题意,由于,所以故答案为:【点睛】本小题主要考查同角三角函数的基本关系式、二倍角公式,考查根式运算,属于基础题.14、【解析】

先求得函数的定义域,根据函数在定义域内的单调性,求得函数的值域.【详解】依题意可知,函数的定义域为,且函数在区间上为单调递增函数,故当时,函数有最小值为,当时,函数有最大值为.所以函数函数的值域是.故答案为:.【点睛】本小题主要考查反正弦函数的定义域和单调性,考查正弦函数的单调性,考查利用函数的单调性求函数的值域,属于基础题.15、128【解析】

观察数阵可知:前行一共有个数,且第行的最后一个数为,且第行有个数,由此可推断出所在的位置.【详解】因为前行一共有个数,且第行的最后一个数为,又因为,所以在第行,且第45行最后数为,又因为第行有个数,,所以在第列,所以.故答案为:.【点睛】本题考查数列在数阵中的应用,着重考查推理能力,难度一般.分析数列在数阵中的应用问题,可从以下点分析问题:观察每一行数据个数与行号关系,同时注意每一行开始的数据或结尾数据,所有行数据的总个数,注意等差数列的求和公式的运用.16、【解析】试题分析:化简得:,所以,解得或(舍去),又,所以.【考点】二倍角公式及三角函数求值【名师点睛】已知三角函数值求角,基本思路是通过化简,得到角的某种三角函数值,结合角的范围求解.本题难度不大,能较好地考查考生的逻辑推理能力、基本计算能力等.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)三点共线,则有与共线,由向量共线的坐标运算可得点坐标;(2),则,由向量数量积的坐标运算可得【详解】设,则,(1)因为三点共线,所以与共线,所以,,点的坐标为.(2)因为,所以,即,,点的坐标为.【点睛】本题考查向量共线和向量垂直的坐标运算,属于基础题.18、(1);(2).【解析】

(1)利用同角三角函数的平方关系可求出的值,然后再利用同角三角函数的商数关系可求出的值;(2)在分式分子和分母中同时除以,将所求分式转化为含的分式求解,代值计算即可.【详解】(1),,因此,;(2)原式.【点睛】本题考查同角三角函数的商数关系求值,同时也考查了弦化切思想的应用,解题时要熟悉弦化切所适用的基本情形,考查计算能力,属于基础题.19、(1)-3;(2)证明见解析.【解析】分析:(1)由题意可得,结合三点共线的充分必要条件可得.(2)由题意结合平面向量数量积的坐标运算法则可得,则恒有成立.详解:(1),∵三点共线,∴,∴.(2),∴,∴恒有成立.点睛:本题主要考查平面向量数量积的运算法则,二次函数的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.20、(1);(2).【解析】

设等差数列的公差为d,由已知列关于首项与公差的方程组,求得首项与公差,则的通项公式可求;求出,进一步得到公比,再由等比数列的前n项和公式求解.【详解】为等差数列,设公差为d,由已知可得,解得,.;由,,等比数列的公比,的前n项和公式.【点睛】本题考查等差数列的通项公式,考查等比数列的前n项和,是中档题.21、(1)直线的方程为.(2)见解析【解析】

(1)结合直线l平分圆,则可知该直线过圆心,代

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论