




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省邢台市桥西区第一中学2025届高一数学第二学期期末考试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中秋的促销活动中,某商场对9月14日9时到14时的销售额进行统计,其频率分布直方图如图所示,已知12时到14时的销售额为万元,则10时到11时的销售额为()A.万元 B.万元 C.万元 D.万元2.已知函数,则不等式的解集是()A. B. C. D.3.圆与圆的位置关系是()A.内切 B.外切 C.相交 D.相离4.已知,则的值域为A. B. C. D.5.设,为两个平面,则能断定∥的条件是()A.内有无数条直线与平行 B.,平行于同一条直线C.,垂直于同一条直线 D.,垂直于同一平面6.执行下面的程序框图,则输出的的值为()A.10 B.34 C.36 D.1547.如图,在圆内随机撒一把豆子,统计落在其内接正方形中的豆子数目,若豆子总数为n,落在正方形内的豆子数为m,则圆周率π的估算值是()A.nmB.2nmC.3n8.已知数列为等比数列,且,则()A. B. C. D.9.在中,,则一定是()A.等腰三角形 B.直角三角形C.等边三角形 D.等腰直角三角形10.若,则()A.-1 B. C.-1或 D.或二、填空题:本大题共6小题,每小题5分,共30分。11.在△ABC中,已知30,则B等于__________.12.将边长为1的正方形ABCD沿对角线AC折起,使平面ACD⊥平面ABC,则折起后B,D两点的距离为________.13.某产品分为优质品、合格品、次品三个等级,生产中出现合格品的概率为0.25,出现次品的概率为0.03,在该产品中任抽一件,则抽到优质品的概率为__________.14.如图为函数(,,,)的部分图像,则函数解析式为________15.设,,则______.16.已知三点、、共线,则a=_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数()的一段图象如图所示.(1)求函数的解析式;(2)若,求函数的值域.18.已知向量与向量的夹角为,且,.(1)求;(2)若,求.19.在中,角的对边分别是,已知,,.(1)求的值;(2)若角为锐角,求的值及的面积.20.已知、、是锐角中、、的对边,是的面积,若,,.(1)求;(2)求边长的长度.21.内角的对边分别为,已知.(1)求;(2)若,,求的面积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】分析:先根据12时到14时的销售额为万元求出总的销售额,再求10时到11时的销售额.详解:设总的销售额为x,则.10时到11时的销售额的频率为1-0.1-0.4-0.25-0.1=0.15.所以10时到11时的销售额为.故答案为C.点睛:(1)本题主要考查频率分布直方图求概率、频数和总数,意在考查学生对这些基础知识的掌握水平.(2)在频率分布直方图中,所有小矩形的面积和为1,频率=.2、A【解析】
分别考虑即时;即时,原不等式的解集,最后求出并集。【详解】当即时,,则等价于,即,解得:,当即时,,则等价于,即,所以,综述所述,原不等式的解集为故答案选A【点睛】本题考查分段函数的应用,一元二次不等式的解集,属于基础题。3、B【解析】
由两圆的圆心距及半径的关系求解即可得解.【详解】解:由圆,圆,即,所以圆的圆心坐标为,圆的圆心坐标为,两圆半径,则圆心距,即两圆外切,故选:B.【点睛】本题考查了两圆的位置关系的判断,属基础题.4、C【解析】
利用求函数的周期为,计算即可得到函数的值域.【详解】因为,,,因为函数的周期,所以函数的值域为,故选C.【点睛】本题考查函数的周期运算,及利用函数的周期性求函数的值域.5、C【解析】
对四个选项逐个分析,可得出答案.【详解】对于选项A,当,相交于直线时,内有无数条直线与平行,即A错误;对于选项B,当,相交于直线时,存在直线满足:既与平行又不在两平面内,该直线平行于,,故B错误;对于选项C,设直线AB垂直于,平面,垂足分别为A,B,假设与不平行,设其中一个交点为C,则三角形ABC中,,显然不可能成立,即假设不成立,故与平行,故C正确;对于选项D,,垂直于同一平面,与可能平行也可能相交,故D错误.【点睛】本题考查了面面平行的判断,考查了学生的空间想象能力,属于中档题.6、B【解析】试题分析:第一次循环:第二次循环:第三次循环:第四次循环:结束循环,输出,选B.考点:循环结构流程图【名师点睛】算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.7、B【解析】试题分析:设正方形的边长为2.则圆的半径为2,根据几何概型的概率公式可以得到mn=4考点:几何概型.【方法点睛】本题題主要考查“体积型”的几何概型,属于中档题.解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与体积有关的几何概型问题关鍵是计算问题题的总体积(总空间)以及事件的体积(事件空间);几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误;(3)利用几何概型的概率公式时,忽视验证事件是否等可能性导致错误.8、A【解析】
根据等比数列性质知:,得到答案.【详解】已知数列为等比数列故答案选A【点睛】本题考查了等比数列的性质,属于简单题.9、B【解析】
利用余弦定理、三角形面积公式、正弦定理,求得和,通过等式消去,求得的两个值,再判断三角形的形状.【详解】,又,,,又,,又,,,,,,解得:或,一定是直角三角形.【点睛】本题在求解过程中对存在两组解,要注意解答的完整性与严谨性,综合两种情况,再对的形状作出判断.10、C【解析】
将已知等式平方,可根据二倍角公式、诱导公式和同角三角函数平方关系将等式化为,解方程可求得结果.【详解】由得:即,解得:或本题正确选项:【点睛】本题考查三角函数值的求解问题,关键是能够通过平方运算,将等式化简为关于的方程,涉及到二倍角公式、诱导公式和同角三角函数平方关系的应用.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据三角形正弦定理得到角,再由三角形内角和关系得到结果.【详解】根据三角形的正弦定理得到,故得到角,当角时,有三角形内角和为,得到,当角时,角故答案为【点睛】在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.12、1.【解析】
取AC的中点E,连结DE,BE,可知DE⊥AC,由平面ACD⊥平面ABC,可得DE⊥平面ABC,DE⊥BE,而,再结合ABCD是正方形可求出.【详解】取AC的中点E,连结DE,BE,显然DE⊥AC,因为平面ACD⊥平面ABC,所以DE⊥平面ABC,所以DE⊥BE,而,所以,.【点睛】本题考查了空间中两点间的距离,把空间角转化为平面角是解决本题的关键.13、0.72【解析】
根据对立事件的概率公式即可求解.【详解】由题意,在该产品中任抽一件,“抽到优质品”与“抽到合格品或次品”是对立事件,所以在该产品中任抽一件,则抽到优质品的概率为.故答案为【点睛】本题主要考查对立事件的概率公式,熟记对立事件的概念及概率计算公式即可求解,属于基础题型.14、【解析】
由函数的部分图像,先求得,得到,再由,得到,结合,求得,即可得到函数的解析式.【详解】由题意,根据函数的部分图像,可得,所以,又由,即,又由,即,解得,即,又因为,所以,所以.故答案为:.【点睛】本题主要考查了利用三角函数的图象求解函数的解析式,其中解答中熟记三角函数的图象与性质,准确计算是解答的关键,着重考查了数形结合思想,以及推理与计算能力,属于基础题.15、【解析】
由,根据两角差的正切公式可解得.【详解】,故答案为【点睛】本题主要考查了两角差的正切公式的应用,属于基础知识的考查.16、【解析】
由三点、、共线,则有,再利用向量共线的坐标运算即可得解.【详解】解:由、、,则,,又三点、、共线,则,则,解得:,故答案为:.【点睛】本题考查了向量共线的坐标运算,属基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)由函数的一段图象求得、、和的值即可;(2)由,求得的取值范围,再利用正弦函数的性质求得的最大和最小值即可.【详解】解:(1)由函数的一段图象知,,,,解得,又时,,,,解得,;,函数的解析式为;(2)当时,,令,解得,此时取得最大值为2;令,解得,此时取得最小值为;函数的值域为.【点睛】本题考查了函数的图象和性质的应用问题,属于基础题.18、(1);(2).【解析】
(1)对等式两边同时平方,利用平面向量数量积的定义以及数量积的运算性质,可以求出;(2)根据两个非零向量互相垂直等价于它们的数量积为零,可以得到方程,解方程可以求出的值.【详解】解:(1)由得,那么;解得或(舍去)∴;(2)由得,那么因此∴.【点睛】本题考查了求平面向量模的问题,考查了两个非零平面向量互相垂直的性质,考查了平面向量数量积的定义及运算性质,考查了数学运算性质.19、(1);(2),.【解析】试题分析:(1)根据题意和正弦定理求出a的值;
(2)由二倍角的余弦公式变形求出,由的范围和平方关系求出,由余弦定理列出方程求出的值,代入三角形的面积公式求出的面积.试题解析:(1)因为,,由正弦定理,得.(2)因为,且,所以,.由余弦定理,得,解得或(舍),所以.20、(1);(2).【解析】
(1)利用三角形的面积公式结合为锐角可求出的值;(2)利用余弦定理可求出边长的长度.【详解】(1)由三角形的面积公式可得,得.为锐角,因此,;(2)由余弦定理得,因此,.【点睛】本题考查利用三角形的面积公式求角,同时也考查了利用余弦定理求三角形的边长,考查计算能力,属于基础题.21
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年证券市场份额试题及答案
- 投资咨询份额与策略:2024年试题及答案
- 如何有效实施马工学管理中的变革试题与答案
- 2024-2025学年冀少版(2024) 生物七年级下册同步教案
- 公务员集资房转让合同范文样本
- 第四单元 11~20的认识(教学设计)-2024-2025学年一年级上册数学人教版
- 2025年鼠抗病毒抗原单克隆抗体项目合作计划书
- 2024-2025学年新教材高中政治 3.1 伟大的改革开放教学实录 新人教版必修第一册
- 中医药产业发展现状及挑战
- 企业委托采购合同标准文本
- 《长津湖》电影赏析PPT
- 半导体行业深度报告:海外观察系列十:从美光破净看存储行业投资机会
- 商业街定位借鉴案例-俄罗斯阿尔巴特街
- 王尽美事迹学习PPT王尽美生平介绍PPT课件(带内容)
- 《学记》的教育思想及其当代价值解析课件
- 律师的职业道德执业规范与执业风险防范
- 国家电网公司施工项目部标准化管理手册(2021年版)线路工程分册
- 装配式建筑深化设计(PPT81P)
- 2022年《中央企业合规管理办法》新制订《中央企业合规管理办法》全文内容课件
- 吊篮使用安全技术交底
- 草船借箭示范课件第2课时
评论
0/150
提交评论