2025届安徽省阜阳市颍上县第二中学数学高一下期末经典模拟试题含解析_第1页
2025届安徽省阜阳市颍上县第二中学数学高一下期末经典模拟试题含解析_第2页
2025届安徽省阜阳市颍上县第二中学数学高一下期末经典模拟试题含解析_第3页
2025届安徽省阜阳市颍上县第二中学数学高一下期末经典模拟试题含解析_第4页
2025届安徽省阜阳市颍上县第二中学数学高一下期末经典模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届安徽省阜阳市颍上县第二中学数学高一下期末经典模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,E是平行四边形ABCD的边AD的中点,设等差数列的前n项和为,若,则()A.25 B. C. D.552.已知某圆柱的底面周长为12,高为2,矩形是该圆柱的轴截面,则在此圆柱侧面上,从到的路径中,最短路径的长度为()A. B. C.3 D.23.已知集合,,,则()A. B. C. D.4.如图所示,向量,则()A. B. C. D.5.若,则()A. B. C. D.6.等差数列{an}的前n项之和为Sn,若A.45 B.54C.63 D.277.已知与的夹角为,,,则()A. B. C. D.8.如果若干个函数的图象经过平移后能够重合,则称这些函数为“同簇函数”.给出下列函数:①;②;③;④.其中“同簇函数”的是()A.①②B.①④C.②③D.③④9.已知满足条件,则目标函数的最小值为A.0 B.1 C. D.10.已知,为直线,,为平面,下列命题正确的是()A.若,,则B.若,,则与为异面直线C.若,,,则D.若,,,则二、填空题:本大题共6小题,每小题5分,共30分。11.一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出80人作进一步调查,则在[1500,2000)(元)月收入段应抽出人.12.若直线与直线互相平行,那么a的值等于_____.13.已知数列为等比数列,,,则数列的公比为__________.14.已知两点A(2,1)、B(1,1+)满足=(sinα,cosβ),α,β∈(﹣,),则α+β=_______________15.已知函数,对于上的任意,,有如下条件:①;②;③;④.其中能使恒成立的条件序号是__________.16.已知,,,则的最小值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的最小正周期为,且该函数图象上的最低点的纵坐标为.(1)求函数的解析式;(2)求函数的单调递增区间及对称轴方程.18.已知,,.(1)求的最小值;(2)求的最小值.19.已知平面向量,.(1)若与垂直,求;(2)若,求.20.如图,三条直线型公路,,在点处交汇,其中与、与的夹角都为,在公路上取一点,且km,过铺设一直线型的管道,其中点在上,点在上(,足够长),设km,km.(1)求出,的关系式;(2)试确定,的位置,使得公路段与段的长度之和最小.21.在△ABC中,中线长AM=2.(1)若=-2,求证:++=0;(2)若P为中线AM上的一个动点,求·(+)的最小值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

根据向量的加法和平面向量定理,得到和的值,从而得到等差数列的公差,根据等差数列求和公式,得到答案.【详解】因为E是平行四边形ABCD的边AD的中点,所以,因为,所以,,所以等差数列的公差,所以.故选:D.【点睛】本题考查向量的加法和平面向量定理,等差数列求和公式,属于简单题.2、A【解析】

由圆柱的侧面展开图是矩形,利用勾股定理求解.【详解】圆柱的侧面展开图如图,圆柱的侧面展开图是矩形,且矩形的长为12,宽为2,则在此圆柱侧面上从到的最短路径为线段,.故选:A.【点睛】本题考查圆柱侧面展开图中的最短距离问题,是基础题.3、C【解析】由题意得,因为,所以,所以,故,故选C.4、A【解析】

根据平面向量的加法的几何意义、平面向量的基本定理、平面向量数乘运算的性质,结合进行求解即可.【详解】.故选:A【点睛】本题考查了平面向量基本定理及加法运算的几何意义,考查了平面向量数乘运算的性质,属于基础题.5、D【解析】.分子分母同时除以,即得:.故选D.6、B【解析】

由等差数列的性质,可知a1【详解】由等差数列的性质,可知a1又由等差数列的前n项和公式,可得S9【点睛】本题主要考查了等差数列的性质,以及前n项和公式的应用,其中解答中熟记等差数列的性质,以及利用等差数列的求和公式,准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.7、A【解析】

将等式两边平方,利用平面向量数量积的运算律和定义得出关于的二次方程,解出即可.【详解】将等式两边平方得,,即,整理得,,解得,故选:A.【点睛】本题考查平面向量模的计算,在计算向量模的时候,一般将向量模的等式两边平方,利用平面向量数量积的定义和运算律进行计算,考查运算求解能力,属于中等题.8、C【解析】试题分析:对于①中的函数而言,,对于③中的函数而言,,由“同簇函数”的定义而知,互为“同簇函数”的若干个函数的振幅相等,将②中的函数向左平移个单位长度,得到的新函数解析式为,故选C.考点:1.新定义;2.三角函数图象变换9、C【解析】作出不等式区域如图所示:求目标函数的最小值等价于求直线的最小纵截距.平移直线经过点A(-2,0)时最小为-2.故选C.10、D【解析】

利用空间中线线、线面、面面间的位置关系对选项逐一判断即可.【详解】由,为直线,,为平面,知:在A中,若,,则与相交、平行或异面,故A错误;在B中,若,,则与相交、平行或异面,故B错误;在C中,若,,,则与相交、平行或异面,故C错误;在D中,若,,,则由线面垂直、面面平行的性质定理得,故D正确.故选:D.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、16【解析】试题分析:由频率分布直方图知,收入在1511--2111元之间的概率为1.1114×511=1.2,所以在[1511,2111)(元)月收入段应抽出81×1.2=16人。考点:频率分布直方图的应用;‚分层抽样。12、;【解析】由题意得,验证满足条件,所以13、【解析】

设等比数列的公比为,由可求出的值.【详解】设等比数列的公比为,则,,因此,数列的公比为,故答案为:.【点睛】本题考查等比数列公比的计算,在等比数列的问题中,通常将数列中的项用首项和公比表示,建立方程组来求解,考查运算求解能力,属于基础题.14、或0【解析】

运用向量的加减运算和特殊角的三角函数值,可得所求和.【详解】两点A(2,1)、B(1,1)满足(sinα,cosβ),可得(﹣1,)=(,)=(sinα,cosβ),即为sinα,cosβ,α,β∈(),可得α,β=±,则α+β=0或.故答案为0或.【点睛】本题考查向量的加减运算和三角方程的解法,考查运能力,属于基础题.15、③④【解析】∵g(x)=[(﹣x)2﹣cos(﹣x)]=[x2﹣cosx]=g(x),∴g(x)是偶函数,∴g(x)图象关于y轴对称,∵g′(x)=x+sinx>0,x∈(0,],∴g(x)在(0,]上是增函数,在[﹣,0)是减函数,故③x1>|x2|;④时,g(x1)>g(x2)恒成立,故答案为:③④.点睛:此题考查的是函数的单调性的应用;已知表达式,根据表达式判断函数的单调性,和奇偶性,偶函数在对称区间上的单调性相反,根据单调性的定义可知,增函数自变量越大函数值越大,减函数自变量越大函数值越小。16、25【解析】

变形后,利用基本不等式可得.【详解】当且仅当,即,时取等号.故答案为:25【点睛】本题考查了利用基本不等式求最值,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)增区间是,对称轴为【解析】

(1)由周期求得ω,再由函数图象上的最低点的纵坐标为﹣3求得A,则函数解析式可求;(2)直接利用复合函数的单调性求函数f(x)的单调递增区间,再由2x求解x可得函数f(x)的对称轴方程.【详解】(1)因为的最小正周期为因为,,,∴.又函数图象上的最低点纵坐标为,且∴∴.(2)由,可得可得单调递增区间.由,得.所以函数的对称轴方程为.【点睛】本题考查函数解析式的求法,考查y=Asin(ωx+φ)型函数的性质,是基础题.18、(1)64,(2)x+y的最小值为18.【解析】试题分析:(1)利用基本不等式构建不等式即可得出;

(2)由,变形得,利用“乘1法”和基本不等式即可得出.试题解析:(1)由,得,又,,故,故,当且仅当即时等号成立,∴(2)由2,得,则.当且仅当即时等号成立.∴【点睛】本题考查了基本不等式的应用,熟练掌握“乘1法”和变形利用基本不等式是解题的关键.19、(1);(2)【解析】

(1)根据垂直数量积为0求解即可.(2)根据平行的公式求解,再计算即可.【详解】解:(1)由已知得,,解得或.因为,所以.(2)若,则,所以或.因为,所以.所以,所以.【点睛】本题主要考查了向量垂直与平行的运用以及模长的计算,属于基础题型.20、(1)(2)当时,公路段与段的总长度最小【解析】

(1)(法一)观察图形可得,由此根据三角形的面积公式,建立方程,化简即可得到的关系式;(法二)以点为坐标原点,所在的直线为轴建立平面直角坐标系,找到各点坐标,根据三点共线,即可得到结论;(2)运用“乘1法”,利用基本不等式,即可求得最值,得到答案.【详解】(1)(法一)由图形可知.,,所以,即.(法二)以为坐标原点,所在的直线为轴建立平面直角坐标系,则,,,,由,,三点共线得.(2)由(1)可知,则(),当且仅当(km)时取等号.答:当时,公路段与段的总长度最小为8..【点睛】本题主要考查了三角形的面积公式应用,以及利用基本不等式求最值,着重考查了推理运算能力,属于基础题.21、(1)见解析;(2)最小值-2.【解析】

试题分析:(1)∵M是BC的中点,∴=(+).代入=-2,得=--,即++=0(2)若P为中线AM上的一个动点,若AM

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论