




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东专卷博雅闻道高三3月份模拟考试新高考数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.元代数学家朱世杰的数学名著《算术启蒙》是中国古代代数学的通论,其中关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.下图是源于其思想的一个程序图,若,,则输出的()A.3 B.4 C.5 D.62.已知平面向量,满足,,且,则()A.3 B. C. D.53.已知正项等比数列的前项和为,且,则公比的值为()A. B.或 C. D.4.已知双曲线的实轴长为,离心率为,、分别为双曲线的左、右焦点,点在双曲线上运动,若为锐角三角形,则的取值范围是()A. B. C. D.5.已知复数,为的共轭复数,则()A. B. C. D.6.已知函数与的图象有一个横坐标为的交点,若函数的图象的纵坐标不变,横坐标变为原来的倍后,得到的函数在有且仅有5个零点,则的取值范围是()A. B.C. D.7.关于函数有下述四个结论:()①是偶函数;②在区间上是单调递增函数;③在上的最大值为2;④在区间上有4个零点.其中所有正确结论的编号是()A.①②④ B.①③ C.①④ D.②④8.存在点在椭圆上,且点M在第一象限,使得过点M且与椭圆在此点的切线垂直的直线经过点,则椭圆离心率的取值范围是()A. B. C. D.9.在中,D为的中点,E为上靠近点B的三等分点,且,相交于点P,则()A. B.C. D.10.已知是的共轭复数,则()A. B. C. D.11.设集合,,则集合A. B. C. D.12.已知抛物线上的点到其焦点的距离比点到轴的距离大,则抛物线的标准方程为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,在△ABC中,AB=4,D是AB的中点,E在边AC上,AE=2EC,CD与BE交于点O,若OB=OC,则△ABC面积的最大值为_______.14.在中,,是的角平分线,设,则实数的取值范围是__________.15.根据如图所示的伪代码,若输出的的值为,则输入的的值为_______.16.某种牛肉干每袋的质量服从正态分布,质检部门的检测数据显示:该正态分布为,.某旅游团游客共购买这种牛肉干100袋,估计其中质量低于的袋数大约是_____袋.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)当时,讨论函数的单调性;(2)若,当时,函数,求函数的最小值.18.(12分)设函数,其中是自然对数的底数.(Ⅰ)若在上存在两个极值点,求的取值范围;(Ⅱ)若,函数与函数的图象交于,且线段的中点为,证明:.19.(12分)在极坐标系中,曲线的极坐标方程为,直线的极坐标方程为,设与交于、两点,中点为,的垂直平分线交于、.以为坐标原点,极轴为轴的正半轴建立直角坐标系.(1)求的直角坐标方程与点的直角坐标;(2)求证:.20.(12分)已知函数.(1)若,求的取值范围;(2)若,对,不等式恒成立,求的取值范围.21.(12分)如图,三棱柱的侧棱垂直于底面,且,,,,是棱的中点.(1)证明:;(2)求二面角的余弦值.22.(10分)已知抛物线Γ:y2=2px(p>0)的焦点为F,P是抛物线Γ上一点,且在第一象限,满足(2,2)(1)求抛物线Γ的方程;(2)已知经过点A(3,﹣2)的直线交抛物线Γ于M,N两点,经过定点B(3,﹣6)和M的直线与抛物线Γ交于另一点L,问直线NL是否恒过定点,如果过定点,求出该定点,否则说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】分析:根据流程图中的可知,每次循环的值应是一个等比数列,公比为;根据流程图中的可知,每次循环的值应是一个等比数列,公比为,根据每次循环得到的的值的大小决定循环的次数即可.详解:记执行第次循环时,的值记为有,则有;记执行第次循环时,的值记为有,则有.令,则有,故,故选B.点睛:本题为算法中的循环结构和数列通项的综合,属于中档题,解题时注意流程图中蕴含的数列关系(比如相邻项满足等比数列、等差数列的定义,是否是求数列的前和、前项积等).2、B【解析】
先求出,再利用求出,再求.【详解】解:由,所以,,,故选:B【点睛】考查向量的数量积及向量模的运算,是基础题.3、C【解析】
由可得,故可求的值.【详解】因为,所以,故,因为正项等比数列,故,所以,故选C.【点睛】一般地,如果为等比数列,为其前项和,则有性质:(1)若,则;(2)公比时,则有,其中为常数且;(3)为等比数列()且公比为.4、A【解析】
由已知先确定出双曲线方程为,再分别找到为直角三角形的两种情况,最后再结合即可解决.【详解】由已知可得,,所以,从而双曲线方程为,不妨设点在双曲线右支上运动,则,当时,此时,所以,,所以;当轴时,,所以,又为锐角三角形,所以.故选:A.【点睛】本题考查双曲线的性质及其应用,本题的关键是找到为锐角三角形的临界情况,即为直角三角形,是一道中档题.5、C【解析】
求出,直接由复数的代数形式的乘除运算化简复数.【详解】.故选:C【点睛】本题考查复数的代数形式的四则运算,共轭复数,属于基础题.6、A【解析】
根据题意,,求出,所以,根据三角函数图像平移伸缩,即可求出的取值范围.【详解】已知与的图象有一个横坐标为的交点,则,,,,,若函数图象的纵坐标不变,横坐标变为原来的倍,则,所以当时,,在有且仅有5个零点,,.故选:A.【点睛】本题考查三角函数图象的性质、三角函数的平移伸缩以及零点个数问题,考查转化思想和计算能力.7、C【解析】
根据函数的奇偶性、单调性、最值和零点对四个结论逐一分析,由此得出正确结论的编号.【详解】的定义域为.由于,所以为偶函数,故①正确.由于,,所以在区间上不是单调递增函数,所以②错误.当时,,且存在,使.所以当时,;由于为偶函数,所以时,所以的最大值为,所以③错误.依题意,,当时,,所以令,解得,令,解得.所以在区间,有两个零点.由于为偶函数,所以在区间有两个零点.故在区间上有4个零点.所以④正确.综上所述,正确的结论序号为①④.故选:C【点睛】本小题主要考查三角函数的奇偶性、单调性、最值和零点,考查化归与转化的数学思想方法,属于中档题.8、D【解析】
根据题意利用垂直直线斜率间的关系建立不等式再求解即可.【详解】因为过点M椭圆的切线方程为,所以切线的斜率为,由,解得,即,所以,所以.故选:D【点睛】本题主要考查了建立不等式求解椭圆离心率的问题,属于基础题.9、B【解析】
设,则,,由B,P,D三点共线,C,P,E三点共线,可知,,解得即可得出结果.【详解】设,则,,因为B,P,D三点共线,C,P,E三点共线,所以,,所以,.故选:B.【点睛】本题考查了平面向量基本定理和向量共线定理的简单应用,属于基础题.10、A【解析】
先利用复数的除法运算法则求出的值,再利用共轭复数的定义求出a+bi,从而确定a,b的值,求出a+b.【详解】i,∴a+bi=﹣i,∴a=0,b=﹣1,∴a+b=﹣1,故选:A.【点睛】本题主要考查了复数代数形式的乘除运算,考查了共轭复数的概念,是基础题.11、B【解析】
先求出集合和它的补集,然后求得集合的解集,最后取它们的交集得出结果.【详解】对于集合A,,解得或,故.对于集合B,,解得.故.故选B.【点睛】本小题主要考查一元二次不等式的解法,考查对数不等式的解法,考查集合的补集和交集的运算.对于有两个根的一元二次不等式的解法是:先将二次项系数化为正数,且不等号的另一边化为,然后通过因式分解,求得对应的一元二次方程的两个根,再利用“大于在两边,小于在中间”来求得一元二次不等式的解集.12、B【解析】
由抛物线的定义转化,列出方程求出p,即可得到抛物线方程.【详解】由抛物线y2=2px(p>0)上的点M到其焦点F的距离比点M到y轴的距离大,根据抛物线的定义可得,,所以抛物线的标准方程为:y2=2x.故选B.【点睛】本题考查了抛物线的简单性质的应用,抛物线方程的求法,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
先根据点共线得到,从而得到O的轨迹为阿氏圆,结合三角形和三角形的面积关系可求.【详解】设B,O,E共线,则,解得,从而O为CD中点,故.在△BOD中,BD=2,,易知O的轨迹为阿氏圆,其半径,故.故答案为:.【点睛】本题主要考查三角形的面积问题,把所求面积进行转化是求解的关键,侧重考查数学运算的核心素养.14、【解析】
设,,,由,用面积公式表示面积可得到,利用,即得解.【详解】设,,,由得:,化简得,由于,故.故答案为:【点睛】本题考查了解三角形综合,考查了学生转化划归,综合分析,数学运算能力,属于中档题.15、【解析】
算法的功能是求的值,根据输出的值,分别求出当时和当时的值即可得解.【详解】解:由程序语句知:算法的功能是求的值,当时,,可得:,或(舍去);当时,,可得:(舍去).综上的值为:.故答案为:.【点睛】本题考查了选择结构的程序语句,根据语句判断算法的功能是解题的关键,属于基础题.16、1【解析】
根据正态分布对称性,求得质量低于的袋数的估计值.【详解】由于,所以,所以袋牛肉干中,质量低于的袋数大约是袋.故答案为:【点睛】本小题主要考查正态分布对称性的应用,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)的最小值为【解析】
(1)由题可得函数的定义域为,,当时,,令,可得;令,可得,所以函数在上单调递增,在上单调递减;当时,令,可得;令,可得或,所以函数在,上单调递增,在上单调递减;当时,恒成立,所以函数在上单调递增.综上,当时,函数在上单调递增,在上单调递减;当时,函数在,上单调递增,在上单调递减;当时,函数在上单调递增.(2)方法一:当时,,,设,,则,所以函数在上单调递减,所以,当且仅当时取等号.当时,设,则,所以,设,,则,所以函数在上单调递减,且,,所以存在,使得,所以当时,;当时,,所以函数在上单调递增,在上单调递减,因为,,所以,所以,当且仅当时取等号.所以当时,函数取得最小值,且,故函数的最小值为.方法二:当时,,,则,令,,则,所以函数在上单调递增,又,所以存在,使得,所以函数在上单调递减,在上单调递增,因为,所以当时,恒成立,所以当时,恒成立,所以函数在上单调递减,所以函数的最小值为.18、(Ⅰ);(Ⅱ)详见解析.【解析】
(Ⅰ)依题意在上存在两个极值点,等价于在有两个不等实根,由参变分类可得,令,利用导数研究的单调性、极值,从而得到参数的取值范围;(Ⅱ)由题解得,,要证成立,只需证:,即:,只需证:,设,即证:,再分别证明,即可;【详解】解:(Ⅰ)由题意可知,,在上存在两个极值点,等价于在有两个不等实根,由可得,,令,则,令,可得,当时,,所以在上单调递减,且当时,单调递增;当时,单调递减;所以是的极大值也是最大值,又当,当大于0趋向与0,要使在有两个根,则,所以的取值范围为;(Ⅱ)由题解得,,要证成立,只需证:即:,只需证:设,即证:要证,只需证:令,则在上为增函数,即成立;要证,只需证明:令,则在上为减函数,,即成立成立,所以成立.【点睛】本题考查利用导数研究函数的单调性、极值,利用导数证明不等式,属于难题;19、(1),;(2)见解析.【解析】
(1)将曲线的极坐标方程变形为,再由可将曲线的极坐标方程化为直角坐标方程,将直线的方程与曲线的方程联立,求出点、的坐标,即可得出线段的中点的坐标;(2)求得,写出直线的参数方程,将直线的参数方程与曲线的普通方程联立,利用韦达定理求得的值,进而可得出结论.【详解】(1)曲线的极坐标方程可化为,即,将代入曲线的方程得,所以,曲线的直角坐标方程为.将直线的极坐标方程化为普通方程得,联立,得或,则点、,因此,线段的中点为;(2)由(1)得,,易知的垂直平分线的参数方程为(为参数),代入的普通方程得,,因此,.【点睛】本题考查曲线的极坐标方程与普通方程之间的转化,同时也考查了直线参数几何意义的应用,涉及韦达定理的应用,考查计算能力,属于中等题.20、(1);(2).【解析】
(1)分类讨论,,,即可得出结果;(2)先由题意,将问题转化为即可,再求出,的最小值,解不等式即可得出结果.【详解】(1)由得,若,则,显然不成立;若,则,,即;若,则,即,显然成立,综上所述,的取值范围是.(2)由题意知,要使得不等式恒成立,只需,当时,,所以;因为,所以,解得,结合,所以的取值范围是.【点睛】本题主要考查含绝对值不等式的解法,以及由不等式恒成立求参数的问题,熟记分类讨论的思想、以及绝对值不等式的性质即可,属于常考题型.21、(1)详见解析;(2).【解析】
(1)根据平面,四边形是矩形,由为中点,且,利用平面几何知识,可得,又平面,所以,根据线面垂直的判定定理可有平面,从而得证.(2)分别以,,为,,轴建立空间直角坐标系,得到,,,,分别求得平和平面的法向量,代入二面角向量公式求解.【详解】(1)证明:∵平面,∴四边形是矩形,∵为中点,且,∴,∵,,,∴.∴,∵,∴与相似,∴,∴,∴,∵,∴平面,∴平面,∵平面,∴,∴平面,∴.(2)如图,分别以,,为,,轴建立空间直角坐标系,则,,,设平面的法向量为,则,,解得:,同理,平面的法向量,设二面角的大小为,则.即二面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 核酸核苷酸行业深度研究分析报告(2024-2030版)
- 2025-2030年中国瓶装氧气行业深度研究分析报告
- 2025-2030年中国五金机械塑料行业深度研究分析报告
- 餐饮协会培训课件
- 2025年中国农用金属配件行业市场发展前景及发展趋势与投资战略研究报告
- 中国蔬菜基地行业市场发展现状及前景趋势与投资分析研究报告(2024-2030)
- 2025年抖音冲锋衣行业趋势洞察报告
- 2025年 朝阳师范学院高校招聘考试笔试试题附答案
- 2025-2030年中国参茸滋补品行业市场供需态势及前景战略研判报告
- 2025年中国全自动管材生产线行业市场发展前景及发展趋势与投资战略研究报告
- MOOC 绳结技术-大连海事大学 中国大学慕课答案
- 医疗助理工作流程
- 动火证申请表模版
- 绞窄性肠梗阻汇报演示课件
- 联合排水试验报告
- 2023江西管理职业学院教师招聘考试真题汇总
- 子女抚养权变更协议
- 变压器铁芯(夹件)接地电流试验
- 被执行人给法院执行局写申请范本
- 23秋国家开放大学《小学语文教学研究》形考任务1-5参考答案
- 露天矿山开采安全-ppt
评论
0/150
提交评论