江苏省苏州市重点名校2025届高一下数学期末统考模拟试题含解析_第1页
江苏省苏州市重点名校2025届高一下数学期末统考模拟试题含解析_第2页
江苏省苏州市重点名校2025届高一下数学期末统考模拟试题含解析_第3页
江苏省苏州市重点名校2025届高一下数学期末统考模拟试题含解析_第4页
江苏省苏州市重点名校2025届高一下数学期末统考模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省苏州市重点名校2025届高一下数学期末统考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,已知,则的面积为()A. B. C. D.2.在ΔABC中,内角A,B,C所对的边分别为a,b,c.若a:b:c=3:4:5,则cosA.35 B.45 C.3.若,且,则()A. B. C. D.4.设全集,集合,则()A. B. C. D.5.若,,且与夹角为,则()A.3 B. C.2 D.6.设的内角,,的对边分别为,,.若,,,且,则()A. B. C. D.7.已知等差数列的前项的和为,若,则等于()A.81 B.90 C.99 D.1808.的值为()A. B. C. D.9.经过,两点的直线方程为()A. B. C. D.10.函数y=tan(–2x)的定义域是()A.{x|x≠+,k∈Z} B.{x|x≠kπ+,k∈Z}C.{x|x≠+,k∈Z} D.{x|x≠kπ+,k∈Z}二、填空题:本大题共6小题,每小题5分,共30分。11.已知,且,则________.12.在△ABC中,sin2A=sin13.已知函数,若,则__________.14.若,则__________.(结果用反三角函数表示)15.已知函数,,的图象如下图所示,则,,的大小关系为__________.(用“”号连接)16.《九章算术》中,将底面为长方形且由一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥为鳖臑,平面,,三棱锥的四个顶点都在球的球面上,则球的表面积为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,为第二象限角.(1)求的值;(2)求的值.18.已知中,角的对边分别为.(1)若依次成等差数列,且公差为2,求的值;(2)若的外接圆面积为,求周长的最大值.19.某购物中心举行抽奖活动,顾客从装有编号分别为0,1,2,3四个球的抽奖箱中,每次取出1个球,记下编号后放回,连续取两次(假设取到任何一个小球的可能性相同).若取出的两个小球号码相加之和等于5,则中一等奖;若取出的两个小球号码相加之和等于4,则中二等奖;若取出的两个小球号码相加之和等于3,则中三等奖;其它情况不中奖.(Ⅰ)求顾客中三等奖的概率;(Ⅱ)求顾客未中奖的概率.20.求函数的最大值21.如图,在四棱锥中,,侧面底面.(1)求证:平面平面;(2)若,且二面角等于,求直线与平面所成角的正弦值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

根据三角形的面积公式求解即可.【详解】的面积.

故选:B【点睛】本题主要考查了三角形的面积公式,属于基础题.2、D【解析】

设a=3k,b=4k,c=5k,利用余弦定理求cosC的值.【详解】设a=3k,b=4k,c=5k,所以cosC=故选D【点睛】本题主要考查余弦定理,意在考查学生对该知识的理解掌握水平和分析推理能力.3、A【解析】

利用二倍角的正弦公式和与余弦公式化简可得.【详解】∵,∴,∵,所以,∴,∴.故选:A【点睛】本题考查了二倍角的正弦公式,考查了二倍角的余弦公式,属于基础题.4、B【解析】

先求出,由此能求出.【详解】∵全集,集合,∴,∴.故选B.【点睛】本题主要考查集合、并集、补集的运算等基本知识,体现运算能力、逻辑推理等数学核心素养.5、B【解析】

由题意利用两个向量数量积的定义,求得的值,再根据,计算求得结果.【详解】由题意若,,且与夹角为,可得,.故选:B.【点睛】本题考查向量数量积的定义、向量的模的方法,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意不要错选成A答案.6、B【解析】由余弦定理得:,所以,即,解得:或,因为,所以,故选B.考点:余弦定理.7、B【解析】

根据已知得到的值,利用等差数列前项和公式以及等差数列下标和的性质,求得的值.【详解】依题意,所以,故选B.【点睛】本小题主要考查等差数列的性质,考查等差数列前项和的计算,属于基础题.8、B【解析】

直接利用诱导公式结合特殊角的三角函数求解即可.【详解】,故选B.【点睛】本题主要考查诱导公式以及特殊角的三角函数,意在考查对基础知识的掌握情况,属于简单题.9、C【解析】

根据题目条件,选择两点式来求直线方程.【详解】由两点式直线方程可得:化简得:故选:C【点睛】本题主要考查了直线方程的求法,还考查了运算求解的能力,属于基础题.10、A【解析】

根据诱导公式化简解析式,由正切函数的定义域求出此函数的定义域.【详解】由题意得,y=tan(–2x)=–tan(2x–),由2x–(k∈Z)得,x≠+,k∈Z,所以函数的定义域是{x|x≠+,k∈Z},故选:A.【点睛】本题考查正切函数的定义域,以及诱导公式的应用,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、或【解析】

利用正切函数的单调性及周期性,可知在区间与区间内各有一值,从而求出。【详解】因为函数的周期为,而且在内单调增,所以有两个解,一个在,一个在,由反正切函数的定义有,或。【点睛】本题主要考查正切函数的性质及反正切函数的定义的应用。12、π【解析】

根据正弦定理化简角的关系式,从而凑出cosA【详解】由正弦定理得:a2=则cos∵A∈0,π本题正确结果:π【点睛】本题考查利用正弦定理和余弦定理解三角形问题,属于基础题.13、【解析】

由三角函数的辅助角公式化简,关键需得出辅助角的正切值,再由函数的最大值求解.【详解】由三角函数的辅助公式得(其中),因为所以,所以,所以,,所以,故填:【点睛】本题考查三角函数的辅助角公式,属于基础题.14、;【解析】

由条件利用反三角函数的定义和性质即可求解.【详解】,则,故答案为:【点睛】本题考查了反三角函数的定义和性质,属于基础题.15、【解析】函数y=ax,y=xb,y=logcx的图象如图所示,由指数函数y=ax,x=2时,y∈(1,2);对数函数y=logcx,x=2,y∈(0,1);幂函数y=xb,x=2,y∈(1,2);可得a∈(1,2),b∈(0,1),c∈(2,+∞).可得b<a<c故答案为:b<a<c.16、【解析】

由题意得该四面体的四个面都为直角三角形,且平面,可得,.因为为直角三角形,可得,所以,因此,结合几何关系,可求得外接球的半径,,代入公式即可求球的表面积.【详解】本题主要考查空间几何体.由题意得该四面体的四个面都为直角三角形,且平面,,,,.因为为直角三角形,因此或(舍).所以只可能是,此时,因此,所以平面所在小圆的半径即为,又因为,所以外接球的半径,所以球的表面积为.【点睛】本题考查三棱锥的外接球问题,难点在于确定BC的长,即得到,再结合几何性质即可求解,考查学生空间想象能力,逻辑推理能力,计算能力,属中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)根据同角三角函数平方关系即可求得结果;(2)利用同角三角函数商数关系可求得,代入两角和差正切公式可求得结果.【详解】(1)为第二象限角(2)由(1)知:【点睛】本题考查同角三角函数值的求解、两角和差正切公式的应用;易错点是忽略角所处的范围,造成三角函数值符号求解错误.18、(1);(2).【解析】

(1)由成等差数列,且公差为,可得,利用余弦定理可构造关于的方程,解方程求得结果;(2)设,利用外接圆面积为,求得外接圆的半径.根据正弦定理,利用表示出三边,将周长表示为关于的函数,利用三角函数的值域求解方法求得最大值.【详解】(1)依次成等差数列,且公差为,,由余弦定理得:整理得:,解得:或又,则(2)设,外接圆的半径为,则,解得:由正弦定理可得:可得:,,的周长又当,即:时,取得最大值【点睛】本题考查了正弦定理、余弦定理解三角形、三角形周长最值的求解.求解周长的最值的关键是能够将周长构造为关于角的函数,从而利用三角函数的知识来进行求解.考查了推理能力与计算能力,属于中档题.19、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)利用列举法列出所有可能,设事件为“顾客中三等奖”,的事件.由古典概型概率计算公式即可求解.(Ⅱ)先分别求得中一等奖、二等奖和三等奖的概率,根据对立事件的概率性质即可求得未中奖的概率.【详解】(Ⅰ)所有基本事件包括共16个设事件为“顾客中三等奖”,事件包含基本事件共4个,所以.(Ⅱ)由题意,中一等奖时“两个小球号码相加之和等于5”,这一事件包括基本事件共2个中二等奖时,“两个小球号码相加之和等于4”,这一事件包括基本事件共3个由(Ⅰ)可知中三等奖的概率为设事件为“顾客未中奖”则由对立事件概率的性质可得所以未中奖的概率为.【点睛】本题考查了古典概型概率的计算方法,对立事件概率性质的应用,属于基础题.20、最大值为5【解析】

本题首先可以根据同角三角函数关系以及配方将函数化简为,然后根据即可得出函数的最大值.【详解】,因为,所以当时,即,函数最大,令,,故最大值为.【点睛】本题考查同角三角函数关系以及一元二次函数的相关性质,考查的公式为,考查计算能力,体现了综合性,是中档题.21、(1)证明见解析;(2).【解析】

(1)由得,,由侧面底面得侧面,由面面垂直的判定即可证明;(2)由侧面,可得,得是二面角的平面角,,推得为等腰直角三角形,取的中点,连接可得,由平面平面,得平面,证明平面,得点到平面的距离等于点到平面的距离,,再利用求解即可【详解】(1)证明:由可得,因为侧面底面,交线为底

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论