版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
天津市大白高中2023-2024学年高考数学押题试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.执行如图所示的程序框图,则输出的()A.2 B.3 C. D.2.已知抛物线的焦点为,为抛物线上一点,,当周长最小时,所在直线的斜率为()A. B. C. D.3.已知函数,对任意的,,当时,,则下列判断正确的是()A. B.函数在上递增C.函数的一条对称轴是 D.函数的一个对称中心是4.对于正在培育的一颗种子,它可能1天后发芽,也可能2天后发芽,….下表是20颗不同种子发芽前所需培育的天数统计表,则这组种子发芽所需培育的天数的中位数是()发芽所需天数1234567种子数43352210A.2 B.3 C.3.5 D.45.已知是等差数列的前项和,,,则()A.85 B. C.35 D.6.已知数列的首项,且,其中,,,下列叙述正确的是()A.若是等差数列,则一定有 B.若是等比数列,则一定有C.若不是等差数列,则一定有 D.若不是等比数列,则一定有7.已知函数,其中表示不超过的最大正整数,则下列结论正确的是()A.的值域是 B.是奇函数C.是周期函数 D.是增函数8.设命题函数在上递增,命题在中,,下列为真命题的是()A. B. C. D.9.已知集合,,则为()A. B. C. D.10.已知直线与圆有公共点,则的最大值为()A.4 B. C. D.11.已知椭圆的左、右焦点分别为,,上顶点为点,延长交椭圆于点,若为等腰三角形,则椭圆的离心率A. B.C. D.12.已知复数z满足(i为虚数单位),则在复平面内复数z对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题:本题共4小题,每小题5分,共20分。13.在平面直角坐标系中,曲线在点处的切线与x轴相交于点A,其中e为自然对数的底数.若点,的面积为3,则的值是______.14.已知实数x,y满足,则的最大值为____________.15.在平面直角坐标系中,点的坐标为,点是直线:上位于第一象限内的一点.已知以为直径的圆被直线所截得的弦长为,则点的坐标__________.16.已知,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某公司欲投资一新型产品的批量生产,预计该产品的每日生产总成本价格)(单位:万元)是每日产量(单位:吨)的函数:.(1)求当日产量为吨时的边际成本(即生产过程中一段时间的总成本对该段时间产量的导数);(2)记每日生产平均成本求证:;(3)若财团每日注入资金可按数列(单位:亿元)递减,连续注入天,求证:这天的总投入资金大于亿元.18.(12分)设函数,是函数的导数.(1)若,证明在区间上没有零点;(2)在上恒成立,求的取值范围.19.(12分)已知函数.(1)若函数在上单调递增,求实数的值;(2)定义:若直线与曲线都相切,我们称直线为曲线、的公切线,证明:曲线与总存在公切线.20.(12分)椭圆的右焦点,过点且与轴垂直的直线被椭圆截得的弦长为.(1)求椭圆的方程;(2)过点且斜率不为0的直线与椭圆交于,两点.为坐标原点,为椭圆的右顶点,求四边形面积的最大值.21.(12分)如图,四棱锥中,四边形是矩形,,为正三角形,且平面平面,、分别为、的中点.(1)证明:平面平面;(2)求二面角的余弦值.22.(10分)已知,.(1)求函数的单调递增区间;(2)的三个内角、、所对边分别为、、,若且,求面积的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
运行程序,依次进行循环,结合判断框,可得输出值.【详解】起始阶段有,,第一次循环后,,第二次循环后,,第三次循环后,,第四次循环后,,所有后面的循环具有周期性,周期为3,当时,再次循环输出的,,此时,循环结束,输出,故选:B【点睛】本题主要考查程序框图的相关知识,经过几次循环找出规律是关键,属于基础题型.2、A【解析】
本道题绘图发现三角形周长最小时A,P位于同一水平线上,计算点P的坐标,计算斜率,即可.【详解】结合题意,绘制图像要计算三角形PAF周长最小值,即计算PA+PF最小值,结合抛物线性质可知,PF=PN,所以,故当点P运动到M点处,三角形周长最小,故此时M的坐标为,所以斜率为,故选A.【点睛】本道题考查了抛物线的基本性质,难度中等.3、D【解析】
利用辅助角公式将正弦函数化简,然后通过题目已知条件求出函数的周期,从而得到,即可求出解析式,然后利用函数的性质即可判断.【详解】,又,即,有且仅有满足条件;又,则,,函数,对于A,,故A错误;对于B,由,解得,故B错误;对于C,当时,,故C错误;对于D,由,故D正确.故选:D【点睛】本题考查了简单三角恒等变换以及三角函数的性质,熟记性质是解题的关键,属于基础题.4、C【解析】
根据表中数据,即可容易求得中位数.【详解】由图表可知,种子发芽天数的中位数为,故选:C.【点睛】本题考查中位数的计算,属基础题.5、B【解析】
将已知条件转化为的形式,求得,由此求得.【详解】设公差为,则,所以,,,.故选:B【点睛】本小题主要考查等差数列通项公式的基本量计算,考查等差数列前项和的计算,属于基础题.6、C【解析】
根据等差数列和等比数列的定义进行判断即可.【详解】A:当时,,显然符合是等差数列,但是此时不成立,故本说法不正确;B:当时,,显然符合是等比数列,但是此时不成立,故本说法不正确;C:当时,因此有常数,因此是等差数列,因此当不是等差数列时,一定有,故本说法正确;D:当时,若时,显然数列是等比数列,故本说法不正确.故选:C【点睛】本题考查了等差数列和等比数列的定义,考查了推理论证能力,属于基础题.7、C【解析】
根据表示不超过的最大正整数,可构建函数图象,即可分别判断值域、奇偶性、周期性、单调性,进而下结论.【详解】由表示不超过的最大正整数,其函数图象为选项A,函数,故错误;选项B,函数为非奇非偶函数,故错误;选项C,函数是以1为周期的周期函数,故正确;选项D,函数在区间上是增函数,但在整个定义域范围上不具备单调性,故错误.故选:C【点睛】本题考查对题干的理解,属于函数新定义问题,可作出图象分析性质,属于较难题.8、C【解析】
命题:函数在上单调递减,即可判断出真假.命题:在中,利用余弦函数单调性判断出真假.【详解】解:命题:函数,所以,当时,,即函数在上单调递减,因此是假命题.命题:在中,在上单调递减,所以,是真命题.则下列命题为真命题的是.故选:C.【点睛】本题考查了函数的单调性、正弦定理、三角形边角大小关系、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.9、C【解析】
分别求解出集合的具体范围,由集合的交集运算即可求得答案.【详解】因为集合,,所以故选:C【点睛】本题考查对数函数的定义域求法、一元二次不等式的解法及集合的交集运算,考查基本运算能力.10、C【解析】
根据表示圆和直线与圆有公共点,得到,再利用二次函数的性质求解.【详解】因为表示圆,所以,解得,因为直线与圆有公共点,所以圆心到直线的距离,即,解得,此时,因为,在递增,所以的最大值.故选:C【点睛】本题主要考查圆的方程,直线与圆的位置关系以及二次函数的性质,还考查了运算求解的能力,属于中档题.11、B【解析】
设,则,,因为,所以.若,则,所以,所以,不符合题意,所以,则,所以,所以,,设,则,在中,易得,所以,解得(负值舍去),所以椭圆的离心率.故选B.12、D【解析】
根据复数运算,求得,再求其对应点即可判断.【详解】,故其对应点的坐标为.其位于第四象限.故选:D.【点睛】本题考查复数的运算,以及复数对应点的坐标,属综合基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
对求导,再根据点的坐标可得切线方程,令,可得点横坐标,由的面积为3,求解即得.【详解】由题,,切线斜率,则切线方程为,令,解得,又的面积为3,,解得.故答案为:【点睛】本题考查利用导数研究函数的切线,难度不大.14、1【解析】
直接用表示出,然后由不等式性质得出结论.【详解】由题意,又,∴,即,∴的最大值为1.故答案为:1.【点睛】本题考查不等式的性质,掌握不等式的性质是解题关键.15、【解析】
依题意画图,设,根据圆的直径所对的圆周角为直角,可得,通过勾股定理得,再利用两点间的距离公式即可求出,进而得出点坐标.【详解】解:依题意画图,设以为直径的圆被直线所截得的弦长为,且,又因为为圆的直径,则所对的圆周角,则,则为点到直线:的距离.所以,则.又因为点在直线:上,设,则.解得,则.故答案为:【点睛】本题考查了直线与圆的位置关系,考查了两点间的距离公式,点到直线的距离公式,是基础题.16、【解析】
首先利用,将其两边同时平方,利用同角三角函数关系式以及倍角公式得到,从而求得,利用诱导公式求得,得到结果.【详解】因为,所以,即,所以,故答案是.【点睛】该题考查的是有关三角函数化简求值问题,涉及到的知识点有同角三角函数关系式,倍角公式,诱导公式,属于简单题目.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析;(3)证明见解析.【解析】
(1)求得函数的导函数,由此求得求当日产量为吨时的边际成本.(2)将所要证明不等式转化为证明,构造函数,利用导数证得,由此证得不等式成立.(3)利用(2)的结论,判断出,由此结合对数运算,证得.【详解】(1)因为所以当时,(2)要证,只需证,即证,设则所以在上单调递减,所以所以,即;(3)因为又由(2)知,当时,所以所以所以【点睛】本小题主要考查导数的计算,考查利用导数证明不等式,考查放缩法证明数列不等式,属于难题.18、(1)证明见解析(2)【解析】
(1)先利用导数的四则运算法则和导数公式求出,再由函数的导数可知,函数在上单调递增,在上单调递减,而,,可知在区间上恒成立,即在区间上没有零点;(2)由题意可将转化为,构造函数,利用导数讨论研究其在上的单调性,由,即可求出的取值范围.【详解】(1)若,则,,设,则,,,故函数是奇函数.当时,,,这时,又函数是奇函数,所以当时,.综上,当时,函数单调递增;当时,函数单调递减.又,,故在区间上恒成立,所以在区间上没有零点.(2),由,所以恒成立,若,则,设,.故当时,,又,所以当时,,满足题意;当时,有,与条件矛盾,舍去;当时,令,则,又,故在区间上有无穷多个零点,设最小的零点为,则当时,,因此在上单调递增.,所以.于是,当时,,得,与条件矛盾.故的取值范围是.【点睛】本题主要考查导数的四则运算法则和导数公式的应用,以及利用导数研究函数的单调性和最值,涉及分类讨论思想和放缩法的应用,难度较大,意在考查学生的数学建模能力,数学运算能力和逻辑推理能力,属于较难题.19、(1);(2)见解析.【解析】
(1)求出导数,问题转化为在上恒成立,利用导数求出的最小值即可求解;(2)分别设切点横坐标为,利用导数的几何意义写出切线方程,问题转化为证明两直线重合,只需满足有解即可,利用函数的导数及零点存在性定理即可证明存在.【详解】(1),函数在上单调递增等价于在上恒成立.令,得,所以在单调递减,在单调递增,则.因为,则在上恒成立等价于在上恒成立;又,所以,即.(2)设的切点横坐标为,则切线方程为……①设的切点横坐标为,则,切线方程为……②若存在,使①②成为同一条直线,则曲线与存在公切线,由①②得消去得即令,则所以,函数在区间上单调递增,,使得时总有又时,在上总有解综上,函数与总存在公切线.【点睛】本题主要考查了利用导数研究函数的恒成立问题,导数的几何意义,利用导数证明方程有解,属于难题.20、(1)(2)最大值.【解析】
(1)根据通径和即可求(2)设直线方程为,联立椭圆,利用,用含的式子表示出,用换元,可得,最后用均值不等式求解.【详解】解:(1)依题意有,,,所以椭圆的方程为.(2)设直线的方程为,联立,得.所以,.所以.令,则,所以,因,则,所以,当且仅当,即时取得等号,即四边形面积的最大值.【点睛】考查椭圆方程的求法和椭圆中四边形面积最大值的求法,是难题.21、(1)见解析;(2)【解析】
(1)取中点,中点,连接,,.设交于,则为的中点,连接.通过证明,证得平面,由此证得平面平面.(2)建立空间直角坐标系,利用平面和平面的法向量,计算出二面角的余弦值.【详解】(1)取中点,中点,连接,,.设交于,则为的中点,连接.设,则,,∴.由已知,,∴平面,∴.∵,∴,∵,∴平面,∵平面,∴平面平面.(2)由(1)及已知可得平面,建立如图所示的空间坐标系,设,则,,,,,,,,设平面的法向量为,∴,令得.设平面的法向量为,∴,令得,∴,∴二面角的余弦值为.【点睛】本小题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 池河镇七年级历史下册 第二单元 辽宋夏金元时期:民族关系发展和社会变化 第7课 辽、西夏与北宋的建立教案1 新人教版
- 八年级地理上册 3.1自然资源的基本特征教案 (新版)新人教版
- 2024-2025学年高中物理 第二章 交变电流 第07节 远距离输电教案 粤教版选修3-2
- 2024-2025学年高中物理 第七章 机械能守恒定律 4 重力势能(1)教案 新人教版必修2
- 江苏省海安县实验中学高中体育 耐久跑教案2 苏教版
- 八年级英语上册 Unit 3 Families Celebrate Together Lesson 15 A Present for Li Ming教案 (新版)冀教版
- 2024-2025学年高中生物下学期《基因指导蛋白质的合成》教学设计
- 运输车贷款购销合同(2篇)
- 病毒预防+课件
- 第13课《唐诗五首·野望》八年级语文上册精讲同步课堂(统编版)
- 云服务器租赁合同三篇
- 北京市海淀区2023-2024学年高三上学期期末考试 英语 含答案
- 广西贺州历年中考语文现代文阅读真题26篇(含答案)(2003-2022)
- 《微项目 探讨如何利用工业废气中的二氧化碳合成甲醇-化学反应的选择与反应条件的优》名校课件
- 《清理厨房》课件劳动四年级下册人教版
- 2024年山东省泰安市中考英语真题(原卷版)
- 人教PEP版(2024)三年级上册英语Unit 5 The colourful world单元整体教学设计(共6课时)
- Unit 3 Sports and Fitness Reading and Thinking 说课教学设计-2023-2024学年高中英语人教版(2019)必修第一册
- 《角的度量》(教学设计)-2024-2025学年四年级上册数学苏教版
- 扬州市梅岭教育集团2023-2024学年初一上学期10月数学试卷及答案
- 中医基础理论-初级课件
评论
0/150
提交评论