版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省河源市2025届数学高一下期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,若,则的值是().A.-1 B.1 C.2 D.-22.已知函数的部分图象如图所示,则函数在上的最大值为()A. B. C. D.13.已知圆锥的表面积为,且它的侧面展开图是一个半圆,则圆锥的底面半径为A. B. C. D.()4.某三棱柱的底面是边长为2的正三角形,高为6,则该三棱柱的体积为A. B. C. D.5.过点的直线的斜率为,则等于()A. B.10 C.2 D.46.已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为A.16 B.14 C.12 D.107.在中,,,分别是角,,的对边,且满足,那么的形状一定是()A.等腰三角形 B.直角三角形 C.等腰或直角三角形 D.等腰直角三角形8.已知数列的通项公式是,则该数列的第五项是()A. B. C. D.9.己知ΔABC中,角A,B,C所对的边分別是a,b,c.若A=45°,B=30°,a=2,则bA.3-1 B.1 C.2 D.10.已知平面向量,,若,则实数()A.-2 B.-1 C. D.2二、填空题:本大题共6小题,每小题5分,共30分。11.若角的终边经过点,则______.12.若直线y=x+m与曲线x=恰有一个公共点,则实数m的取值范围是______.13.在明朝程大位《算术统宗》中有这样的一首歌谣:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯”.这首古诗描述的这个宝塔古称浮屠,本题说“宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,共有381盏灯,问塔顶有几盏灯?”根据上述条件,从上往下数第二层有___________盏灯.14.如图,为测量山高,选择和另一座山的山顶为测量观测点,从点测得的仰角,点的仰角以及;从点测得;已知山高,则山高__________.15.设为偶函数,则实数的值为________.16.若向量,则与夹角的余弦值等于_____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,其图象的一个对称中心是,将的图象向左平移个单位长度后得到函数的图象.(1)求函数的解析式;(2)若对任意,当时,都有,求实数的最大值;(3)若对任意实数在上与直线的交点个数不少于6个且不多于10个,求实数的取值范围.18.(2012年苏州17)如图,在中,已知为线段上的一点,且.(1)若,求的值;(2)若,且,求的最大值.19.已知关于的不等式.(1)当时,解上述不等式.(2)当时,解上述关于的不等式20.已知直线l的方程为.(1)求过点且与直线l垂直的直线方程;(2)求直线与的交点,且求这个点到直线l的距离.21.如图,已知平面,为矩形,分别为的中点,.(1)求证:平面;(2)求证:面平面;(3)求点到平面的距离.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
先求出的坐标,再利用向量平行的坐标表示求出c的值.【详解】由题得,因为,所以2(c-2)-2×0=0,所以c=2.故选C【点睛】本题主要考查向量的坐标计算和向量共线的坐标表示,意在考查学生对这些知识的理解掌握水平,属于基础题.2、A【解析】
由图象求出T、ω和φ的值,写出f(x)的解析式,再求x∈[6,10]时函数f(x)的最大值.【详解】由图象可知,5﹣3=2,解得T=8,由T8,解得ω;∴函数的解析式是f(x)=sin(x+φ);∵(5,1)在f(x)的图象上,有1=sin(φ)∴φ=2kπ,k∈Z;φ=2kπ,k∈Z;又﹣π<φ<0,∴φ;∴函数的解析式是f(x)=sin(x)当x∈[6,10]时,x∈[,],∴sin(x)∈[﹣1,];∴函数f(x)的最大值是.故选A.【点睛】本题考查了三角函数的图象与性质的应用问题,熟记图像与性质是关键,是基础题.3、C【解析】解:4、C【解析】
计算结果.【详解】因为底面是边长为2的正三角形,所以底面的面积为,则该三棱柱的体积为.【点睛】本题考查了棱柱的体积公式,属于简单题型.5、B【解析】
直接应用斜率公式,解方程即可求出的值.【详解】因为过点的直线的斜率为,所以有,故本题选B.【点睛】本题考查了直线斜率公式,考查了数学运算能力.6、A【解析】设,直线的方程为,联立方程,得,∴,同理直线与抛物线的交点满足,由抛物线定义可知,当且仅当(或)时,取等号.点睛:对于抛物线弦长问题,要重点抓住抛物线定义,到定点的距离要想到转化到准线上,另外,直线与抛物线联立,求判别式,利用根与系数的关系是通法,需要重点掌握.考查最值问题时要能想到用函数方法和基本不等式进行解决.此题还可以利用弦长的倾斜角表示,设直线的倾斜角为,则,则,所以.7、C【解析】
由正弦定理,可得,.,或,或,即或,即三角形为等腰三角形或直角三角形,故选C.考点:1正弦定理;2正弦的二倍角公式.8、A【解析】
代入即可得结果.【详解】解:由已知,故选:A.【点睛】本题考查数列的项和项数之间的关系,是基础题.9、B【解析】
由正弦定理可得.【详解】∵asinA=故选B.【点睛】本题考查正弦定理,解题时直接应用正弦定理可解题,本题属于基础题.10、A【解析】
由题意,则,再由数量积的坐标表示公式即可得到关于的方程,解出它的值【详解】由,,则,即解得:故选:A【点睛】本题考查数量积判断两个平面向量的垂直关系,向量的数量积坐标表示,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用三角函数的定义可计算出,然后利用诱导公式可计算出结果.【详解】由三角函数的定义可得,由诱导公式可得.故答案为:.【点睛】本题考查利用三角函数的定义和诱导公式求值,考查计算能力,属于基础题.12、{m|-1<m≤1或m=-}【解析】
由x=,化简得x2+y2=1,注意到x≥0,所以这个曲线应该是半径为1,圆心是(0,0)的半圆,且其图象只在一、四象限.画出图象,这样因为直线与其只有一个交点,由此能求出实数m的取值范围.【详解】由x=,化简得x2+y2=1,注意到x≥0,所以这个曲线应该是半径为1,圆心是(0,0)的半圆,且其图象只在一、四象限.画出图象,这样因为直线与其只有一个交点,从图上看出其三个极端情况分别是:①直线在第四象限与曲线相切,②交曲线于(0,﹣1)和另一个点,③与曲线交于点(0,1).直线在第四象限与曲线相切时解得m=﹣,当直线y=x+m经过点(0,1)时,m=1.当直线y=x+m经过点(0,﹣1)时,m=﹣1,所以此时﹣1<m≤1.综上满足只有一个公共点的实数m的取值范围是:﹣1<m≤1或m=﹣.故答案为:{m|-1<m≤1或m=-}.【点睛】本题考查实数的取值范围的求法,是中档题,解题时要认真审题,注意数形结合思想的合理运用.13、6.【解析】
根据题意可将问题转化为等比数列中,已知和,求解的问题;利用等比数列前项和公式可求得,利用求得结果.【详解】由题意可知,每层悬挂的红灯数成等比数列,设为设第层悬挂红灯数为,向下依次为且即从上往下数第二层有盏灯本题正确结果;【点睛】本题考查利用等比数列前项和求解基本量的问题,属于基础题.14、【解析】在△ABC中,,,在△AMC中,,由正弦定理可得,解得,在Rt△AMN中.15、4【解析】
根据偶函数的定义知,即可求解.【详解】因为为偶函数,所以,故,解得.故填4.【点睛】本题主要考查了偶函数的定义,利用定义求参数的取值,属于中档题.16、【解析】
利用坐标运算求得;根据平面向量夹角公式可求得结果.【详解】本题正确结果:【点睛】本题考查向量夹角的求解,明确向量夹角的余弦值等于向量的数量积除以两向量模长的乘积.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3).【解析】
(1)根据正弦函数的对称性,可得函数的解析式,再由函数图象的平移变换法则,可得函数的解析式;(2)将不等式进行转化,得到函数在[0,t]上为增函数,结合函数的单调性进行求解即可;(3)求出的解析式,结合交点个数转化为周期关系进行求解即可.【详解】(1)因为函数,其图象的一个对称中心是,所以有,的图象向左平移个单位长度后得到函数的图象.所以;(2)由,构造新函数为,由题意可知:任意,当时,都有,说明函数在上是单调递增函数,而的单调递增区间为:,而,所以单调递增区间为:,因此实数的最大值为:;(3),其最小正周期,而区间的长度为,直线的交点个数不少于6个且不多于10个,则,且,解得:.【点睛】本题考查了正弦型函数的对称性和图象变换,考查了正弦型函数的单调性,考查了已知两函数图象的交点个数求参数问题,考查了数学运算能力.18、(1);(2).【解析】试题分析:(1)利用平面向量基本定理可得.(2)利用题意可得,则的最大值为.试题解析:(1),而,∴.(2)∴当时,的最大值为.19、(1).(2)当时,解集为,当时,解集为,当时,解集为或【解析】
(1)将代入,结合一元二次不等式解法即可求解.(2)根据不等式,对分类讨论,即可由零点大小确定不等式的解集.【详解】(1)当时,代入可得,解不等式可得,所以不等式的解集为.(2)关于的不等式.若,当时,代入不等式可得,解得;当时,化简不等式可得,由解不等式可得,当时,化简不等式可得,解不等式可得或,综上可知,当时,不等式解集为,当时,不等式解集为,当时,不等式解集为或【点睛】本题考查了一元二次不等式的解法,含参数分类讨论的应用,属于基础题.20、(1)(2)1【解析】
(1)与l垂直的直线方程可设为,再将点代入方程可得;(2)先求两直线的交点,再用点到直线的距离公式可得点到直线l的距离.【详解】解:(1)设与直线垂直的直线方程为,把代入,得,解得,∴所求直线方程为.(2)解方程组得∴直线与的交点为,点到直线的距离.【点睛】本题考查两直线垂直时方程的求法和点到直线的距离公式.21、(1)证明见解析;(2)证明见解析;(3).【解析】
(1)利用线面平行的判定定理,寻找面PAD内的一条直线平行于MN,即可证出;(2)先证出一条直线垂直于面PCD,依据第一问结论
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国无虚线半高领短袖套衫数据监测研究报告
- 2024至2030年中国弹操机构全套冲压件行业投资前景及策略咨询研究报告
- 2024至2030年中国塑料内执手数据监测研究报告
- 人教部编版八年级道德与法治上册《第二课-第一框-网络改变世界》作业同步练习题及参考答案
- 一建考前培训
- 儿童医疗知识
- 废钢铁购销合同模板
- 时尚发布会金箔施工协议
- 独资企业水电改造协议
- 垫资施工合同飞机制造
- 新建加油站工程施工组织设计方案
- 余姚农业信息综合服务系统需求说明
- 司法涉案目的评估指南
- 光伏电站消纳利用率计算导则
- 焓熵图(膨胀线)
- 青春期多囊卵巢综合征诊治共识.ppt
- 前后鼻音生字表
- 人教版八年级上册英语单词表默写版(直接打印)
- 五年级数学质量分析经验交流发言稿(共3页)
- 工程的材料及成型技术基础概念鞠鲁粤编
- (精选)国培结业典礼领导讲话稿范文(3篇)
评论
0/150
提交评论