云南省玉溪市第一中学2025届高一下数学期末教学质量检测试题含解析_第1页
云南省玉溪市第一中学2025届高一下数学期末教学质量检测试题含解析_第2页
云南省玉溪市第一中学2025届高一下数学期末教学质量检测试题含解析_第3页
云南省玉溪市第一中学2025届高一下数学期末教学质量检测试题含解析_第4页
云南省玉溪市第一中学2025届高一下数学期末教学质量检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省玉溪市第一中学2025届高一下数学期末教学质量检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.定义平面凸四边形为平面上没有内角度数大于的四边形,在平面凸四边形中,,,,,设,则的取值范围是()A. B. C. D.2.若平面∥平面,直线∥平面,则直线与平面的关系为()A.∥ B. C.∥或 D.3.已知等差数列的前n项和为,且,,则()A.11 B.16 C.20 D.284.已知内角,,所对的边分别为,,且满足,则=()A. B. C. D.5.是边AB上的中点,记,,则向量()A. B.C. D.6.对于函数,在使成立的所有常数中,我们把的最大值称为函数的“下确界”.若函数,的“下确界”为,则的取值范围是()A. B. C. D.7.设为直线,是两个不同的平面,下列说法中正确的是()A.若,则B.若,则C.若,则D.若,则8.已知函数,则下列结论不正确的是()A.是的一个周期 B.C.的值域为R D.的图象关于点对称9.为了得到函数的图像,只需把函数的图像A.向左平移个长度单位 B.向右平移个长度单位C.向左平移个长度单位 D.向右平移个长度单位10.在中,分别是角的对边,若,且,则的值为()A.2 B. C. D.4二、填空题:本大题共6小题,每小题5分,共30分。11.的值域是______.12.如图,在直四棱柱中,,,,分别为的中点,平面平面.给出以下几个说法:①;②直线与的夹角为;③与平面所成的角为;④平面内存在直线与平行.其中正确命题的序号是__________.13.如图,圆锥型容器内盛有水,水深,水面直径放入一个铁球后,水恰好把铁球淹没,则该铁球的体积为________14.已知向量,若,则________.15.在赛季季后赛中,当一个球队进行完场比赛被淘汰后,某个篮球爱好者对该队的7场比赛得分情况进行统计,如表:场次得分104为了对这个队的情况进行分析,此人设计计算的算法流程图如图所示(其中是这场比赛的平均得分),输出的的值______.16.计算:=_______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数.(1)求不等式的解集;(2)若对于,恒成立,求的取值范围.18.如图1,在直角梯形中,,,点在上,且,将沿折起,使得平面平面(如图2).为中点(1)求证:;(2)求四棱锥的体积;(3)在线段上是否存在点,使得平面?若存在,求的值;若不存在,请说明理由19.在国内汽车市场中,国产SUV出现了持续不退的销售热潮,2018年国产SUV销量排行榜完整版已经出炉,某品牌车型以惊人的销量成绩击退了所有虎视眈眈的对手,再次霸气登顶,下面是该品牌国产SUV分别在2017年与2018年7~11月份的销售量对比表时间7月8月9月10月11月2017年(单位:万辆)2.83.93.54.45.42018年(单位:万辆)3.83.94.54.95.4(Ⅰ)若从7月至11月中任选两个月份,求至少有一个月份这两年该国产品牌SUV销量相同的概率.(Ⅱ)分别求这两年7月至11月的销售数据的平均数,并直接判断哪年的销售量比较稳定.20.在中,内角A,B,C的对边分别为a,b,c,且满足.(1)求内角B的大小;(2)设,,的最大值为5,求k的值.21.已知函数.(1)求函数的最小正周期;(2)求函数的最小值及相应的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

先利用余弦定理计算,设,将表示为的函数,再求取值范围.【详解】如图所示:在中,利用正弦定理:当时,有最小值为当时,有最大值为(不能取等号)的取值范围是故答案选D【点睛】本题考查了利用正余弦定理计算长度范围,将表示为的函数是解题的关键.2、C【解析】

利用空间几何体,发挥直观想象,易得直线与平面的位置关系.【详解】设平面为长方体的上底面,平面为长方体的下底面,因为直线∥平面,所以直线通过平移后,可能与平面平行,也可能平移到平面内,所以∥或.【点睛】空间中点、线、面位置关系问题,常可以借助长方体进行研究,考查直观想象能力.3、C【解析】

可利用等差数列的性质,,仍然成等差数列来解决.【详解】为等差数列,前项和为,,,成等差数列,,又,,,.故选:.【点睛】本题考查等差数列的性质,关键在于掌握“等差数列中,,仍成等差数列”这一性质,属于基础题.4、A【解析】

利用正弦定理以及和与差的正弦公式可得答案;【详解】∵0<A<π,∴sinA≠0由atanA=bcosC+ccosB,根据正弦定理:可得sinA•tanA=sinBcosC+sinCcosB=sin(B+C)=sinA∴•tanA=1;∴tanA,那么A;故选A.【点睛】本题考查三角形的正弦定理,,内角和定理以及和与差正弦公式的运用,考查运算能力,属于基础题.5、C【解析】由题意得,∴.选C.6、A【解析】

由下确界定义,,的最小值是,由余弦函数性质可得.【详解】由题意,的最小值是,又,由,得,,,时,,所以.故选:A.【点睛】本题考查新定义,由新定义明确本题中的下确界就是函数的最小值.可通过解不等式确定参数的范围.7、C【解析】

画出长方体,按照选项的内容在长方体中找到相应的情况,即可得到答案【详解】对于选项A,在长方体中,任何一条棱都和它相对的两个平面平行,但这两个平面相交,所以A不正确;对于选项B,若,分别是长方体的上、下底面,在下底面所在平面中任选一条直线,都有,但,所以B不正确;对于选项D,在长方体中,令下底面为,左边侧面为,此时,在右边侧面中取一条对角线,则,但与不垂直,所以D不正确;对于选项C,设平面,且,因为,所以,又,所以,又,所以,所以C正确.【点睛】本题考查直线与平面的位置关系,属于简单题8、B【解析】

利用正切函数的图像和性质对每一个选项逐一分析得解.【详解】A.的最小正周期为,所以是的一个周期,所以该选项正确;B.所以该选项是错误的;C.的值域为R,所以该选项是正确的;D.的图象关于点对称,所以该选项是正确的.故选B【点睛】本题主要考查正切函数的图像和性质,意在考查学生对该知识的理解掌握水平,属于基础题.9、B【解析】试题分析:记函数,则函数∵函数f(x)图象向右平移单位,可得函数的图象∴把函数的图象右平移单位,得到函数的图象,故选B.考点:函数y=Asin(ωx+φ)的图象变换.10、A【解析】

由正弦定理,化简求得,解得,再由余弦定理,求得,即可求解,得到答案.【详解】在中,因为,且,由正弦定理得,因为,则,所以,即,解得,由余弦定理得,即,解得,故选A.【点睛】本题主要考查了正弦定理、余弦定理的应用,其中利用正弦、余弦定理可以很好地解决三角形的边角关系,熟练掌握定理、合理运用是解本题的关键.通常当涉及两边及其中一边的对角或两角及其中一角对边时,运用正弦定理求解;当涉及三边或两边及其夹角时,运用余弦定理求解.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

对进行整理,得到正弦型函数,然后得到其值域,得到答案.【详解】,因为所以的值域为.故答案为:【点睛】本题考查辅助角公式,正弦型函数的值域,属于简单题.12、①③.【解析】

利用线面平行的性质定理可判断①;利用平行线的性质可得直线与的夹角等于直线与所成的角,在中即可判断②;与平面所成的角即为与平面所成的角可判断③;根据直线与平面的位置关系可判断④;【详解】对于①,由,平面平面,则,又,所以,故①正确;对于②,连接,由,即直线与的夹角等于直线与所成的角,在中,,显然直线与的夹角不为,故②不正确;对于③,与平面所成的角即为与平面所成的角,根据三棱柱为直棱柱可知为与平面所成的角,在梯形中,,,,可解得与平面所成的角为,故③正确;对于④,由于与平面相交,故平面内不存在与平行的直线.故答案为:①③【点睛】本题是一道立体几何题目,考查了线面平行的性质定理,求线面角以及直线与平面之间的位置关系,属于中档题.13、【解析】

通过将图形转化为平面图形,然后利用放球前后体积等量关系求得球的体积.【详解】作出相关图形,显然,因此,因此放球前,球O与边相切于点M,故,则,所以,,所以放球后,而,而,解得.【点睛】本题主要考查圆锥体积与球体积的相关计算,建立体积等量关系是解决本题的关键,意在考查学生的划归能力,计算能力和分析能力.14、【解析】

直接利用向量平行性质得到答案.【详解】,若故答案为【点睛】本题考查了向量平行的性质,属于简单题.15、【解析】

根据题意,模拟程序框图的运行过程,得出该程序运行的是求数据的标准差,即可求得答案.【详解】模拟程序框图的运行过程知,该程序运行的结果是求这个数据的标准差这组数据的平均数是方差是:标准差是故答案为:.【点睛】本题主要考查了根据程序框图求输出结果,解题关键是掌握程序框图基础知识和计算数据方差的解法,考查了分析能力和计算能力,属于中档题.16、【解析】试题分析:考点:两角和的正切公式点评:本题主要考查两角和的正切公式变形的运用,抓住和角是特殊角,是解题的关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【解析】

(1)由得,然后分、、三种情况来解不等式;(2)由恒成立,由参变量分离法得出,并利用基本不等式求出在上的最小值,即可得出实数的取值范围.【详解】(1),,.当时,不等式的解集为;当时,原不等式为,该不等式的解集为;当时,不等式的解集为;(2)由题意,当时,恒成立,即时,恒成立.由基本不等式得,当且仅当时,等号成立,所以,,因此,实数的取值范围是.【点睛】本题考查含参二次不等式的解法,同时也考查了利用二次不等式恒成立求参数的取值范围,在含单参数的二次不等式恒成立问题时,可充分利用参变量分离法,转化为函数的最值来求解,可避免分类讨论,考查化归与转化思想的应用,属于中等题.18、(1)证明见解析(2)(3)存在,【解析】

(1)证明DG⊥AE,再根据面面垂直的性质得出DG⊥平面ABCE即可证明(2)分别计算DG和梯形ABCE的面积,即可得出棱锥的体积;(3)过点C作CF∥AE交AB于点F,过点F作FP∥AD交DB于点P,连接PC,可证平面PCF∥平面ADE,故CP∥平面ADE,根据PF∥AD计算的值.【详解】(1)证明:因为为中点,,所以.因为平面平面,平面平面,平面,所以平面.又因为平面,故(2)在直角三角形中,易求,则所以四棱锥的体积为(3)存在点,使得平面,且=3:4过点作交于点,则.过点作交于点,连接,则.又因为平面平面,所以平面.同理平面.又因为,所以平面平面.因为平面,所以平面,由,则=3:4【点睛】本题考查了面面垂直的性质,面面平行性质,棱锥的体积计算,属于中档题.19、(Ⅰ);(Ⅱ),,年销售量更稳定.【解析】

(Ⅰ)列举出所有可能的情况,在其中找到至少一个月份两年销量相同的情况,根据古典概型概率公式求得结果;(Ⅱ)根据平均数和方差的计算公式分别计算出两年销量的平均数与方差;由可得结论.【详解】(Ⅰ)从月至月中任选两个月份,记为,所有可能的结果为:,,,,,,,,,,共种情况记事件为“至少有一个月份这两年国产品牌销量相同”,则有:,,,,,,,共种情况,即至少有一个月份这两年国产品牌销量相同的概率为(Ⅱ)年销售数据平均数为:方差年销售数据平均数为:方差年的销售量更稳定【点睛】本题考查古典概型概率问题的求解、计算数据的平均数、利用方差评估数据的稳定性的问题;处理古典概型问题的关键是通过列举的方式得到所有基本事件个数和满足题意的基本事件个数,从

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论