2025届广东省卓识教育深圳实验部高一数学第二学期期末学业质量监测模拟试题含解析_第1页
2025届广东省卓识教育深圳实验部高一数学第二学期期末学业质量监测模拟试题含解析_第2页
2025届广东省卓识教育深圳实验部高一数学第二学期期末学业质量监测模拟试题含解析_第3页
2025届广东省卓识教育深圳实验部高一数学第二学期期末学业质量监测模拟试题含解析_第4页
2025届广东省卓识教育深圳实验部高一数学第二学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届广东省卓识教育深圳实验部高一数学第二学期期末学业质量监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设集合,则()A. B. C. D.2.将正整数按第组含个数分组:那么所在的组数为()A. B. C. D.3.某班现有60名学生,随机编号为0,1,2,…,59.依编号顺序平均分成10组,组号依次为1,2,3,…,10.现用系统抽样的方法抽取一个容量为10的样本,若在第1组中随机抽取的号码为5,则在第7组中随机抽取的号码为()A.41 B.42 C.43 D.444.已知实数m,n满足不等式组则关于x的方程x2-(3m+2n)x+6mn=0的两根之和的最大值和最小值分别是()A.7,-4 B.8,-8C.4,-7 D.6,-65.执行下图所示的程序框图,若输出的,则输入的x为()A.0 B.1 C.0或1 D.0或e6.秦九韶是我国南宋时期的数学家,在他所著的《数书九章》中提出的多项式求值的“秦九韶算法”,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法,求某多项式值的一个实例,若输入的值分别为4和2,则输出的值为()A.32 B.64 C.65 D.1307.若,,则的最小值为()A.2 B. C. D.8.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A. B.C. D.9.若对任意,不等式恒成立,则a的取值范围为()A. B. C. D.10.已知,是两个不同的平面,是两条不同的直线,下列命题中错误的是()A.若∥,,,则B.若∥,,,则C.若,,,则⊥D.若⊥,,,,则二、填空题:本大题共6小题,每小题5分,共30分。11.不等式的解集为________12.从甲、乙、丙、丁四个学生中任选两人到一个单位实习,余下的两人到另一单位实习,则甲、乙两人不在同一单位实习的概率为________.13.某餐厅的原料支出与销售额(单位:万元)之间有如下数据,根据表中提供的数据,用最小二乘法得出与的线性回归方程,则表中的值为_________.245682535557514.已知,则的最小值是_______.15.关于的不等式的解集是,则______.16.若,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设递增等差数列{an}的前n项和为Sn,已知a3=1,a4是a3和a7的等比中项,(1)求数列{an}的通项公式;(2)求数列{an}的前n项和Sn.18.已知和的交点为.(1)求经过点且与直线垂直的直线的方程(2)直线经过点与轴、轴交于、两点,且为线段的中点,求的面积.19.已知圆:与圆:.(1)求两圆的公共弦长;(2)过平面上一点向圆和圆各引一条切线,切点分别为,设,求证:平面上存在一定点使得到的距离为定值,并求出该定值.20.如图,在矩形ABCD中,AB=3,BC=2,点M,N分别是边AB,CD上的点,且MN∥BC,.若将矩形ABCD沿MN折起使其形成60°的二面角(如图).(1)求证:平面CND⊥平面AMND;(2)求直线MC与平面AMND所成角的正弦值.21.已知函数的部分图象如图所示.(1)求函数的解析式,并求出的单调递增区间;(2)若,求的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

先求得集合,再结合集合的交集的概念及运算,即可求解.【详解】由题意,集合,所以.故选:B.【点睛】本题主要考查了集合的交集的运算,其中解答中正确求解集合B,结合集合的交集的概念与运算求解是解答的关键,着重考查了推理与运算能力,属于基础题.2、B【解析】

观察规律,看每一组的最后一个数与组数的关系,可知第n组最后一个数是2+3+4+…..+n+1=,然后再验证求解.【详解】观察规律,第一组最后一个数是2=2,第二组最后一个数是5=2+3,第三组最后一个数是9=2+3+4,……,依此,第n组最后一个数是2+3+4+…..+n+1=.当时,,所以所在的组数为63.故选:B【点睛】本题主要考查了数列的递推,还考查了推理论证的能力,属于中档题.3、A【解析】

由系统抽样.先确定分组间隔,然后编号成等差数列来求所抽取号码.【详解】由题知分组间隔为以,又第1组中抽取的号码为5,所以第7组中抽取的号码为.故选:A.【点睛】本题考查系统抽样,掌握系统抽样的概念与方法是解题基础.4、A【解析】由题意得,方程的两根之和,画出约束条件所表示的平面区域,如图所示,由,可得,此时,由,可得,此时,故选A.5、C【解析】

根据程序框图,分两种情况讨论,即可求得对应的的值.【详解】当输出结果为时.当,则,解得当,则,解得综上可知,输入的或故选:C【点睛】本题考查了程序框图的简单应用,指数方程与对数方程的解法,属于基础题.6、C【解析】程序运行循环时变量值为:;;;,退出循环,输出,故选C.7、D【解析】

根据所给等量关系,用表示出可得.代入中,构造基本不等式即可求得的最小值.【详解】因为,所以变形可得所以由基本不等式可得当且仅当时取等号,解得所以的最小值为故选:D【点睛】本题考查了基本不等式求最值的应用,注意构造合适的基本不等式形式,属于中档题.8、C【解析】

先通过三视图找到几何体原图,再求几何体的体积得解.【详解】由题得该几何体是一个边长为4的正方体挖去一个圆锥(圆锥底面在正方体上表面上,圆锥顶部朝下),所以几何体体积为.故选:C【点睛】本题主要考查三视图还原几何体原图,考查组合体体积的计算,意在考查学生对这些知识的理解掌握水平.9、D【解析】

对任意,不等式恒成立,即恒成立,代入计算得到答案.【详解】对任意,不等式恒成立即恒成立故答案为D【点睛】本题考查了不等式恒成立问题,意在考查学生的计算能力和解决问题的能力.10、A【解析】

根据平面和直线关系,依次判断每个选项得到答案.【详解】A.若,,,则如图所示情况,两直线为异面直线,错误其它选项正确.故答案选A【点睛】本题考查了直线平面的关系,找出反例是解题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】因为所以,即不等式的解集为.12、.【解析】

求得从甲、乙、丙、丁四个学生中任选两人的总数和甲、乙两人不在同一单位实习的方法数,由古典概型的概率计算公式可得所求值.【详解】解:从甲、乙、丙、丁四个学生中任选两人的方法数为种,甲、乙两人不在同一单位实习的方法数为种,则甲、乙两人不在同一单位实习的概率为.故答案为:.【点睛】本题主要考查古典概型的概率计算公式,考查运算能力,属于基础题.13、60【解析】

由样本中心过线性回归方程,求得,,代入即可求得【详解】由题知:,,将代入得故答案为:60【点睛】本题考查样本中心与最小二乘法公式的关系,易错点为将直接代入求解,属于中档题14、3【解析】

根据,将所求等式化为,由基本不等式,当a=b时取到最小,可得最小值。【详解】因为,所以,所以(当且仅当时,等号成立).【点睛】本题考查基本不等式,解题关键是构造不等式,并且要注意取最小值时等号能否成立。15、【解析】

利用二次不等式解集与二次方程根的关系,由二次不等式的解集得到二次方程的根,再利用根与系数的关系,得到和的值,得到答案.【详解】因为关于的不等式的解集是,所以关于的方程的解是,由根与系数的关系得,解得,所以.【点睛】本题考查二次不等式解集和二次方程根之间的关系,属于简单题.16、【解析】

由诱导公式求解即可.【详解】因为所以故答案为:【点睛】本题主要考查了利用诱导公式化简求值,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)an=2n﹣1;(2).【解析】

(1)用首项和公差表示出已知关系,求出,可得通项公式;(2)由等差数列前项和公式得结论.【详解】(1)在递增等差数列{an}中,设公差为d>0,∵,∴,解得.∴an=﹣3+(n﹣1)×2=2n﹣1.(2)由(1)知,.【点睛】本题考查等差数列的通项公式和前项和公式,解题方法是基本量法.18、(1);(2)2【解析】

(1)联立两条直线的方程,解方程组求得点坐标,根据的斜率求得与其垂直直线的斜率,根据点斜式求得所求直线方程.(2)根据(1)中点的坐标以及为中点这一条件,求得两点的坐标,进而求得三角形的面积.【详解】解:(1)联立,解得交点的坐标为,∵与垂直,∴的斜率,∴的方程为,即.(2)∵为的中点,已知,,即,∴【点睛】本小题主要考查两条直线交点坐标的求法,考查两条直线垂直斜率的关系,考查直线的点斜式方程,考查三角形的面积公式以及中点坐标,属于基础题.19、(1)(2)【解析】

(1)把两圆方程相减得到公共弦所在直线方程,再根据点到直线距离公式与圆的垂径定理求两圆的公共弦长;(2)根据圆的切线长与半径的关系代入化简即可得到点的轨迹方程,进而求解.【详解】解:(1)由,相减得两圆的公共弦所在直线方程为:,设(0,0)到的距离为,则所以,公共弦长为所以,公共弦长为.(2)证明:由题设得:化简得:配方得:所以,存在定点使得到的距离为定值,且该定值为.【点睛】本题主要考查圆的应用.求两圆的公共弦关键在求公共弦所在直线方程;求动点与定点距离问题,首先要求出动点的轨迹方程.20、(1)见解析;(2).【解析】

(1)转化为证明MN⊥平面CND;(2)过点C作CH⊥ND与点H,则MH是MC在平面AMND内的射影,所以∠CMH即直线MC与平面AMND所成的角.【详解】(1)∵在矩形ABCD中,MN∥BC,∴MN⊥ND,MN⊥NC,又∵ND,NC是平面CND内的两条相交直线,∴MN⊥平面CND,又MN平面AMND,∴平面CND⊥平面AMND.(2)由(1)知∠CND=60°,又,AB=3,BC=2,MN∥BC,所以CN=1,DN=2,由余弦定理得,所以∠DCN=90°,过点C作CH⊥ND与点H,连接MH,则∠CMH即直线MC与平面AMND所成的角,又,所以故直线MC与平面AMND所成角的正弦值为.【点睛】本题考查面面平行证明和线面角.面面平行证明要转化为线面平行证明;求线面角关键在于作出直线在平面内的射影.21、(1);递增区间为;(2)【解析】

(1)由图可知其函数的周期满足,从而求得,进而求得,再代入点的坐标可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论