江苏省海安市2025届高一下数学期末考试试题含解析_第1页
江苏省海安市2025届高一下数学期末考试试题含解析_第2页
江苏省海安市2025届高一下数学期末考试试题含解析_第3页
江苏省海安市2025届高一下数学期末考试试题含解析_第4页
江苏省海安市2025届高一下数学期末考试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省海安市2025届高一下数学期末考试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,圆O所在的平面,AB是圆O的直径,C是圆周上一点(与A、B均不重合),则图中直角三角形的个数是()A.1 B.2 C.3 D.42.已知数列,如果,,,……,,……,是首项为1,公比为的等比数列,则=A. B. C. D.3.如图,这是某校高一年级一名学生七次月考数学成绩(满分100分)的茎叶图去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别是()A.87,9.6 B.85,9.6 C.87,5,6 D.85,5.64.在中,角所对的边分别为,已知下列条件,只有一个解的是()A.,, B.,,C.,, D.,,5.已知的内角、、的对边分别为、、,边上的高为,且,则的最大值是()A. B. C. D.6.若函数和在区间D上都是增函数,则区间D可以是()A. B. C. D.7.已知向量,且,则()A.2 B. C. D.8.化简()A. B. C. D.9.方程表示的曲线是()A.一个圆 B.两个圆 C.半个圆 D.两个半圆10.某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设等差数列,的前项和分别为,,若,则__________.12.计算:________.13.已知等差数列则.14.利用数学归纳法证明不等式“”的过程中,由“”变到“”时,左边增加了_____项.15.正项等比数列中,为数列的前n项和,,则的取值范围是____________.16.函数在上是减函数,则的取值范围是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某同学利用暑假时间到一家商场勤工俭学,该商场向他提供了三种付款方式:第一种,每天支付38圆;第二种,第一天付4元,第二天付8元,第三天付12元,以此类推:第三种,第一天付0.4元,以后每天比前一天翻一番(即增加一倍),你会选择哪种方式领取报酬呢?18.我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量单位:吨,将数据按照,,分成9组,制成了如图所示的频率分布直方图.(1)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数说明理由;(2)估计居民月均用水量的中位数.19.已知正项等比数列满足,,数列满足.(1)求数列,的通项公式;(2)令,求数列的前项和;(3)若,且对所有的正整数都有成立,求的取值范围.20.如图,在四棱锥中,底面是矩形,平面,,.(1)求直线与平面所成角的正弦值;(2)若点分别在上,且平面,试确定点的位置21.如图,四棱锥中,平面,底面是平行四边形,若,.(Ⅰ)求证:平面平面;(Ⅱ)求棱与平面所成角的正弦值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

利用直径所对的圆周角为直角和线面垂直的判定定理和性质定理即可判断出答案.【详解】AB是圆O的直径,则AC⊥BC,由于PA⊥平面ABC,则PA⊥BC,即有BC⊥平面PAC,则有BC⊥PC,则△PBC是直角三角形;由于PA⊥平面ABC,则PA⊥AB,PA⊥AC,则△PAB和△PAC都是直角三角形;再由AC⊥BC,得∠ACB=90°,则△ACB是直角三角形.综上可知:此三棱锥P−ABC的四个面都是直角三角形.故选D.【点睛】本题考查直线与平面垂直的性质,考查垂直关系的推理与证明,属于基础题.2、A【解析】分析:累加法求解。详解:,,解得点睛:形如的模型,求通项公式,用累加法。3、D【解析】

去掉一个最高分和一个最低分后,所剩数据为82,84,84,86,89,由此能求出所剩数据的平均数和方差.【详解】平均数,方差,选D.【点睛】本题考查所剩数据的平均数和方差的求法,考查茎叶图、平均数、方差的性质等基础知识,考查运算求解能力,是基础题.4、D【解析】

首先根据正弦定理得到,比较与的大小关系即可判定A,B错误,再根据大边对大角即可判定C错误,根据勾股定理即可判定D正确.【详解】对于A,因为,,所以,有两个解,故A错误.对于B,因为,,所以,无解,故B错误.对于C,因为,所以,即,,所以无解,故C错误.对于D,,为直角三角形,故D正确.故选:D【点睛】本题主要考查三角形个数的判断,利用正弦定理判断为解题的关键,属于简单题.5、C【解析】

由余弦定理化简可得,利用三角形面积公式可得,解得,利用正弦函数的图象和性质即可得解其最大值.【详解】由余弦定理可得:,故:,而,故,所以:.故选.【点睛】本题主要考查了余弦定理,三角形面积公式,正弦函数的图象和性质在解三角形中的综合应用,考查了转化思想,属于中档题.6、D【解析】

依次判断每个选项,排除错误选项得到答案.【详解】时,单调递减,A错误时,单调递减,B错误时,单调递减,C错误时,函数和都是增函数,D正确故答案选D【点睛】本题考查了三角函数的单调性,意在考查学生对于三角函数性质的理解应用,也可以通过图像得到答案.7、B【解析】

根据向量平行得到,再利用和差公式计算得到答案.【详解】向量,且,则..故选:.【点睛】本题考查了向量平行求参数,和差公式,意在考查学生的综合应用能力.8、A【解析】

减法先变为加法,利用向量的三角形法则得到答案.【详解】故答案选A【点睛】本题考查了向量的加减法,属于简单题.9、D【解析】原方程即即或故原方程表示两个半圆.10、C【解析】

通过三视图可以判断这一个是半个圆柱与半个圆锥形成的组合体,利用圆柱和圆锥的体积公式可以求出这个组合体的体积.【详解】该几何体为半个圆柱与半个圆锥形成的组合体,故,故选C.【点睛】本题考查了利用三视图求组合体图形的体积,考查了运算能力和空间想象能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】分析:首先根据等差数列的性质得到,利用分数的性质,将项的比值转化为和的比值,从而求得结果.详解:根据题意有,所以答案是.点睛:该题考查的是有关等差数列的性质的问题,将两个等差数列的项的比值可以转化为其和的比值,结论为,从而求得结果.12、3【解析】

直接利用数列的极限的运算法则求解即可.【详解】.故答案为:3【点睛】本题考查数列的极限的运算法则,考查计算能力,属于基础题.13、1【解析】试题分析:根据公式,,将代入,计算得n=1.考点:等差数列的通项公式.14、.【解析】

分析题意,根据数学归纳法的证明方法得到时,不等式左边的表示式是解答该题的突破口,当时,左边,由此将其对时的式子进行对比,得到结果.【详解】当时,左边,当时,左边,观察可知,增加的项数是,故答案是.【点睛】该题考查的是有关数学归纳法的问题,在解题的过程中,需要明确式子的形式,正确理解对应式子中的量,认真分析,明确哪些项是添的,得到结果.15、【解析】

利用结合基本不等式求得的取值范围【详解】由题意知,,且,所以,当且仅当等号成立,所以.故答案为:【点睛】本题考查等比数列的前n项和及性质,利用性质结合基本不等式求最值是关键16、【解析】

根据二次函数的图象与性质,即可求得实数的取值范围,得到答案.【详解】由题意,函数表示开口向下,且对称轴方程为的抛物线,当函数在上是减函数时,则满足,解得,所以实数的取值范围.故答案为:.【点睛】本题主要考查了二次函数的图象与性质的应用,其中解答中熟记二次函数的图象与性质,列出相应的不等式是解答的关键,着重考查了推理与运算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、见解析【解析】

,,.下面考察,,的大小.可以看出时,.因此,当工作时间小于10天时,选用第一种付费方式,时,,,因此,选用第三种付费方式.18、(1)3.6万;(2)2.06.【解析】

(1)由频率分布直方图的性质,求得,利用频率分布直方图求得月均用水量不低于3吨的频率为,进而得到样本中月均用水量不低于3吨的户数;(2)根据频率分布直方图,利用中位数的定义,即可求解.【详解】(1)由频率分布直方图的性质,可得,即,解得,又由频率分布直方图可得月均用水量不低于3吨的频率为,即样本中月均用水量不低于3吨的户数为万.(2)根据频率分布直方图,得:,则,所以中位数应在组内,即,所以中位数是.【点睛】本题主要考查了频率分布直方图的性质,以及频率分布直方图中位数的求解及应用,其中解答中熟记频率分布直方图的性质和中位数的计算是解答的关键,着重考查了推理与运算能力,属于基础题.19、(1),;(2);(3).【解析】

(1)设等比数列的公比为,则,根据条件可求出的值,利用等比数列的通项公式可求出,再由对数的运算可求出数列的通项公式;(2)求出数列的通项公式,然后利用错位相减法求出数列的前项和为;(3)利用数列单调性的定义求出数列最大项的值为,由题意得出关于的不等式对任意的恒成立,然后利用参变量分离法得出,并利用基本不等式求出在时的最小值,即可得出实数的取值范围.【详解】(1)设等比数列的公比为,则,由可得,,,即,,解得,.;(2)由(1)可得,,可得,上式下式,得,因此,;(3),,,,即,则有.所以,数列是单调递减数列,则数列的最大项为.由题意可知,关于的不等式对任意的恒成立,.由基本不等式可得,当且仅当时,等号成立,则在时的最小值为,,因此,实数的取值范围是.【点睛】本题考查等比数列通项公式的求解,考查错位相减求和法以及数列不等式恒成立问题,涉及数列最大项的问题,一般利用数列单调性的定义来求解,考查分析问题和解决问题的能力,属于中等题.20、(1);(2)M为AB的中点,N为PC的中点【解析】

(1)由题意知,AB,AD,AP两两垂直.以为正交基底,建立空间直角坐标系,求平面PCD的一个法向量为,由空间向量的线面角公式求解即可;(2)设,利用平面PCD,所以∥,得到的方程,求解即可确定M,N的位置【详解】(1)由题意知,AB,AD,AP两两垂直.以为正交基底,建立如图所示的空间直角坐标系,则从而设平面PCD的法向量则即不妨取则.所以平面PCD的一个法向量为.设直线PB与平面PCD所成角为所以即直线PB与平面PCD所成角的正弦值为.(2)设则设则而所以.由(1)知,平面PCD的一个法向量为,因为平面PCD,所以∥.所以解得,.所以M为AB的中点,N为PC的中点.【点睛】本题考查空间向量的应用,求线面角,探索性问题求点位置,熟练掌握空间向量的运算是关键,是基础题21、(Ⅰ)见证明;(Ⅱ)【解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论