版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省成都市双流县棠湖中学2025届数学高一下期末教学质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.的值等于()A. B.- C. D.-2.若实数满足约束条件则的最大值与最小值之和为()A. B. C. D.3.已知角的终边经过点,则的值是()A. B. C. D.4.在中,,,,,则()A.或 B. C. D.5.若函数的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数的图像可能是()A. B. C. D.6.已知为第一象限角,,则()A. B. C. D.7.若不等式的解集为空集,则实数a的取值范围是()A. B. C. D.8.若且,则下列不等式成立的是()A. B. C. D.9.已知等差数列的首项,公差,则()A.5 B.7 C.9 D.1110.已知,,直线,若直线过线段的中点,则()A.-5 B.5 C.-4 D.4二、填空题:本大题共6小题,每小题5分,共30分。11.在中角所对的边分别为,若则___________12.函数在的值域是__________________.13.走时精确的钟表,中午时,分针与时针重合于表面上的位置,则当下一次分针与时针重合时,时针转过的弧度数的绝对值等于_______.14.若x、y满足约束条件,则的最大值为________.15.在平面直角坐标系中,从五个点:中任取三个,这三点能构成三角形的概率是_______.16.在边长为2的正三角形ABC内任取一点P,则使点P到三个顶点的距离至少有一个小于1的概率是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角A,B,C的对边分别为a,b,c,,且.(1)求A;(2)求面积的最大值.18.为了评估A,B两家快递公司的服务质量,从两家公司的客户中各随机抽取100名客户作为样本,进行服务质量满意度调查,将A,B两公司的调查得分分别绘制成频率分布表和频率分布直方图.规定分以下为对该公司服务质量不满意.分组频数频率0.4合计(Ⅰ)求样本中对B公司的服务质量不满意的客户人数;(Ⅱ)现从样本对A,B两个公司服务质量不满意的客户中,随机抽取2名进行走访,求这两名客户都来自于B公司的概率;(Ⅲ)根据样本数据,试对两个公司的服务质量进行评价,并阐述理由.19.如图,四棱锥中,平面,底面是平行四边形,若,.(Ⅰ)求证:平面平面;(Ⅱ)求棱与平面所成角的正弦值.20.已知曲线C:x2+y2+2x+4y+m=1.(1)当m为何值时,曲线C表示圆?(2)若直线l:y=x﹣m与圆C相切,求m的值.21.在四棱锥中,,.(1)若点为的中点,求证:平面;(2)当平面平面时,求二面角的余弦值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
利用诱导公式把化简成.【详解】【点睛】本题考查诱导公式的应用,即把任意角的三角函数转化成锐角三角函数,考查基本运算求解能力.2、A【解析】
首先根据不等式组画出对应的可行域,再分别计算出顶点的坐标,带入目标函数求出相应的值,即可找到最大值和最小值.【详解】不等式组对应的可行域如图所示:,.,.,,.,,.故选:A【点睛】本题主要考查线性规划,根据不等式组画出可行域为解题的关键,属于简单题.3、D【解析】
首先计算出,根据三角函数定义可求得正弦值和余弦值,从而得到结果.【详解】由三角函数定义知:,,则:本题正确选项:【点睛】本题考查任意角三角函数的求解问题,属于基础题.4、C【解析】
由三角形面积公式可得,进而可得解.【详解】在中,,,,,可得,所以,所以【点睛】本题主要考查了三角形的面积公式,属于基础题.5、B【解析】因为对A不符合定义域当中的每一个元素都有象,即可排除;对B满足函数定义,故符合;对C出现了定义域当中的一个元素对应值域当中的两个元素的情况,不符合函数的定义,从而可以否定;对D因为值域当中有的元素没有原象,故可否定.故选B.6、B【解析】
由式子两边平方可算得,又由,即可得到本题答案.【详解】因为,,,,所以.故选:B【点睛】本题主要考查利用同角三角函数的基本关系及诱导公式化简求值.7、D【解析】
对分两种情况讨论分析得解.【详解】当时,不等式为,所以满足题意;当时,,综合得.故选:D【点睛】本题主要考查不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平,属于基础题.8、D【解析】
利用不等式的性质对四个选项逐一判断.【详解】选项A:,符合,但不等式不成立,故本选项是错误的;选项B:当符合已知条件,但零没有倒数,故不成立,故本选项是错误的;选项C:当时,不成立,故本选项是错误的;选项D:因为,所以根据不等式的性质,由能推出,故本选项是正确的,因此本题选D.【点睛】本题考查了不等式的性质,结合不等式的性质,举特例是解决这类问题的常见方法.9、C【解析】
直接利用等差数列的通项公式,即可得到本题答案.【详解】由为等差数列,且首项,公差,得.故选:C【点睛】本题主要考查利用等差数列的通项公式求值,属基础题.10、B【解析】
根据题意先求出线段的中点,然后代入直线方程求出的值.【详解】因为,,所以线段的中点为,因为直线过线段的中点,所以,解得.故选【点睛】本题考查了直线过某一点求解参量的问题,较为简单.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】,;由正弦定理,得,解得.考点:正弦定理.12、【解析】
利用反三角函数的性质及,可得答案.【详解】解:,且,,∴,故答案为:【点睛】本题主要考查反三角函数的性质,相对简单.13、.【解析】
设时针转过的角的弧度数为,可知分针转过的角为,于此得出,由此可计算出的值,从而可得出时针转过的弧度数的绝对值的值.【详解】设时针转过的角的弧度数的绝对值为,由分针的角速度是时针角速度的倍,知分针转过的角的弧度数的绝对值为,由题意可知,,解得,因此,时针转过的弧度数的绝对值等于,故答案为.【点睛】本题考查弧度制的应用,主要是要弄清楚时针与分针旋转的角之间的等量关系,考查分析问题和计算能力,属于中等题.14、18【解析】
先作出不等式组所表示的平面区域,再观察图像即可得解.【详解】解:作出不等式组所表示的平面区域,如图所示,由图可得:目标函数所在直线过点时,取最大值,即,故答案为:.【点睛】本题考查了简单的线性规划问题,重点考查了作图能力,属基础题.15、【解析】
分别算出两点间的距离,共有种,构成三角形的条件为任意两边之和大于第三边,所以在这10种中找出满足条件的即可.【详解】由两点之间的距离公式,得:,,,任取三点有:,共10种,能构成三角形的有:,共6种,所求概率为:.【点睛】构成三角形必须满足任意两边之和大于第三边,则n个点共有个线段,找出满足条件的即可,属于中等难度题目.16、【解析】以A,B,C为圆心,以1为半径作圆,与△ABC交出三个扇形,当P落在其内时符合要求,∴P==.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)由题目条件a=1,可以将(1+b)(sinA-sinB)=(c-b)sinC中的1换成a,达到齐次化的目的,再用正余弦定理解决;(2)已知∠A,要求△ABC的面积,可用公式,因此把问题转化为求bc的最大值.【详解】(1)因为(1+b)(sinA-sinB)=(c-b)sinC,由正弦定理得:(1+b)(a-b)=(c-b)c∴(a+b)(a-b)=(c-b)c,得b2+c2-a2=bc由余弦定理得:,所以.(2)因为b2+c2-a2=bc,所以bc=b2+c2-1≥2bc-1,可得bc≤1;所以,当且仅当b=c=1时,取等号.∴面积的最大值.【点睛】本题考查正弦定理解三角形及面积问题,解决三角形面积最值问题常常结合均值不等式求解,属于中等题.18、(Ⅰ)3人;(Ⅱ)0.3;(Ⅲ)见解析【解析】
(Ⅰ)对B公司的服务质量不满意的频率为,即概率为0.03,易求解.(Ⅱ)共有5名客服不满意,将每种情况都列出来即可算出全来自于B公司的概率.(Ⅲ)可通过频率对比,服务质量得分的众数,服务质量得70分(或80分)以上的频率几个方面进行对比.【详解】(Ⅰ)样本中对B公司的服务质量不满意的频率为,所以样本中对B公司的服务质量不满意的客户有人.(Ⅱ)设“这两名客户都来自于B公司”为事件M.对A公司的服务质量不满意的客户有2人,分别记为,;对B公司的服务质量不满意的客户有3人,分别记为,,.现从这5名客户中随机抽取2名客户,不同的抽取的方法有,,,,,,,,,共10个;其中都来自于B公司的抽取方法有,,共3个,所以.所以这两名客户都来自于B公司的概率为.(Ⅲ)答案一:由样本数据可以估计客户对A公司的服务质量不满意的频率比对B公司服务质量不满意的频率小,由此推断A公司的服务质量比B公司的服务质量好.答案二:由样本数据可以估计A公司的服务质量得分的众数与B公司服务质量得分的众数相同,由此推断A公司的服务质量与B公司的服务质量相同.答案三:由样本数据可以估计A公司的服务质量得70分(或80分)以上的频率比B公司得70分(或80分)以上的频率小,由此推断A公司的服务质量比B公司的服务质量差.答案四:由样本数据可以估计A公司的服务质量得分的平均分比B公司服务质量得分的平均分低,由此推断A公司的服务质量比B公司的服务质量差.【点睛】此题考查概率,关键理解清楚频率分布表和频率分布直方图表示的含有,简单数据可通过列表法求概率或者可以组合数求解,属于较易题目.19、(Ⅰ)见证明;(Ⅱ)【解析】
(Ⅰ)先证明平面,再证明平面平面.(Ⅱ)以为原点,所在直线为轴,所在直线为轴,所在直线为轴,建立如图空间直角坐标系,利用向量法求棱与平面所成角的正弦值.【详解】解:(Ⅰ)∵平面,∴,∵,,,∴,∴,∴平面,又∵平面,∴平面平面.(Ⅱ)以为原点,所在直线为轴,所在直线为轴,所在直线为轴,建立如图空间直角坐标系,则,,,,于是,,,设平面的一个法向量为,则,解得,∴,设与平面所成角为,则.【点睛】本题主要考查空间垂直关系的证明,考查线面角的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.20、(1)当m<2时,曲线C表示圆(2)m=±3【解析】解:(1)由C:x2+y2+2x+4y+m=1,得(x+1)2+(y+2)2=2﹣m,由2﹣m>1,得m<2.∴当m<2时,曲线C表示圆;(2)圆C的圆心坐标为(﹣1,﹣2),半径为.∵直线l:y=x﹣m与圆C相切,∴,解得:m=±3,满足m<2.∴m=±3.【点评】本题考查圆的一般方程,考查了直线与圆位置关系的应用,训练了点到直线的距离公式的应用,是基础题.21、(1)见解析;(2).【解析】
(I)结合平面与平面平行判定,得到平面BEM平行平面PAD,结合平面与平面性质,证明结论.(II)建立空间坐标系,分别计算平面PCD和平面PDB的法向量,结合向量数量积公式,计算余弦值,即可.【详解】(Ⅰ)取的中点为,连结,.由已知得,为等边三角形,.∵,,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度企业间合作合同及商业机密保护协议
- 2024年度铲车租赁合同范本
- 2024年度环保搬迁项目补偿协议
- 2024年超耐候水性氟碳漆项目可行性研究报告
- 2024年度ROHS合规性电子产品检测与认证合同
- 2024年渔具轮座项目可行性研究报告
- 2024至2030年中国镀铝膜复膜胶数据监测研究报告
- 2024年有机膦阻垢缓蚀剂项目可行性研究报告
- 2024年复合式冲淋洗眼器项目可行性研究报告
- 二零二四年度股权投资合同with优先购买权与反稀释保护
- 职业打假人投诉、举报处理规范
- 危重患者早期识别课件
- 预防事故和职业病的措施及应注意的安全事项
- 丰田核心竞争力及战略分析课件
- 高风险作业施工安全措施
- 生物分离工程吸附分离及离子交换
- 外科手术中肝脏切除技术讲解
- 机动车驾驶培训汽车安全驾驶课件
- 《人员烫伤应急预案》课件
- 驾校年度安全生产目标方案
- 新能源基础知识入门
评论
0/150
提交评论