版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届甘肃省平凉市静宁一中数学高一下期末经典试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某校高二理(1)班学习兴趣小组为了调查学生喜欢数学课的人数比例,设计了如下调查方法:(1)在本校中随机抽取100名学生,并编号1,2,3,…,100;(2)在箱内放置了两个黄球和三个红球,让抽取到的100名学生分别从箱中随机摸出一球,记住其颜色并放回;(3)请下列两类学生站出来,一是摸到黄球且编号数为奇数的学生,二是摸到红球且不喜欢数学课的学生。若共有32名学生站出来,那么请用统计的知识估计该校学生中喜欢数学课的人数比例大约是()A.80% B.85% C.90% D.92%2.若,且,则xy的最大值为()A. B. C. D.3.设,则比多了()项A. B. C. D.4.若样本数据,,…,的方差为2,则数据,,…,的方差为()A.4 B.8 C.16 D.325.在中,角,,所对的边分别为,,,若,则的值为()A. B. C. D.6.已知,为直线,,为平面,下列命题正确的是()A.若,,则B.若,,则与为异面直线C.若,,,则D.若,,,则7.若对任意的正数a,b满足,则的最小值为A.6 B.8 C.12 D.248.已知函数,且此函数的图象如图所示,由点的坐标是()A. B. C. D.9.在中,角所对的边分别为,已知下列条件,只有一个解的是()A.,, B.,,C.,, D.,,10.等差数列中,已知,且公差,则其前项和取最小值时的的值为()A.6 B.7 C.8 D.9二、填空题:本大题共6小题,每小题5分,共30分。11.在数列中,,,则__________.12.如图,为测量山高,选择和另一座山的山顶为测量观测点,从点测得的仰角,点的仰角以及;从点测得;已知山高,则山高__________.13.已知向量,则________14.过点作圆的切线,则切线的方程为_____.15.将边长为1的正方形中,把沿对角线AC折起到,使平面⊥平面ABC,则三棱锥的体积为________.16.计算__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在几何体P﹣ABCD中,平面ABCD⊥平面PAB,四边形ABCD为矩形,△PAB为正三角形,若AB=2,AD=1,E,F分别为AC,BP中点.(1)求证:EF∥平面PCD;(2)求直线DP与平面ABCD所成角的正弦值.18.已知集合.(Ⅰ)求;(Ⅱ)若集合,写出集合的所有子集.19.已知,为常数,且,,.(I)若方程有唯一实数根,求函数的解析式.(II)当时,求函数在区间上的最大值与最小值.(III)当时,不等式恒成立,求实数的取值范围.20.在中,角A,B,C所对的边分别为a,b,c,.(1)求角C;(2)若,,求的面积.21.已知△ABC中,A(1,﹣4),B(6,6),C(﹣2,0).求(1)过点A且平行于BC边的直线的方程;(2)BC边的中线所在直线的方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
先分别计算号数为奇数的概率、摸到黄球的概率、摸到红球的概率,从而可得摸到黄球且号数为奇数的学生,进而可得摸到红球且不喜欢数学课的学生人数,由此可得估计该校学生中喜欢数学课的人数比例.【详解】解:由题意,号数为奇数的概率为0.5,摸到黄球的概率为,摸到红球的概率为那么按概率计算摸到黄球且号数为奇数的学生有个共有32名学生站出来,则有12个摸到红球且不喜欢数学课的学生,不喜欢数学课的学生有:,喜欢数学课的有80个,估计该校学生中喜欢数学课的人数比例大约是:.故选:.【点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,是基础题.2、D【解析】
利用基本不等式可直接求得结果.【详解】(当且仅当时取等号)的最大值为故选:【点睛】本题考查利用基本不等式求解积的最大值的问题,属于基础题.3、C【解析】
可知中共有项,然后将中的项数减去中的项数即可得出答案.【详解】,则中共有项,所以,比多了的项数为.故选:C.【点睛】本题考查数学归纳法的应用,解题的关键就是计算出等式中的项数,考查分析问题和解决问题的能力,属于中等题.4、B【解析】
根据,则即可求解.【详解】因为样本数据,,…,的方差为2,所以,,…,的方差为,故选B.【点睛】本题主要考查了方差的概念及求法,属于容易题.5、B【解析】
化简式子得到,利用正弦定理余弦定理原式等于,代入数据得到答案.【详解】利用正弦定理和余弦定理得到:故选B【点睛】本题考查了正弦定理,余弦定理,三角恒等变换,意在考查学生的计算能力.6、D【解析】
利用空间中线线、线面、面面间的位置关系对选项逐一判断即可.【详解】由,为直线,,为平面,知:在A中,若,,则与相交、平行或异面,故A错误;在B中,若,,则与相交、平行或异面,故B错误;在C中,若,,,则与相交、平行或异面,故C错误;在D中,若,,,则由线面垂直、面面平行的性质定理得,故D正确.故选:D.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,属于基础题.7、C【解析】
利用“1”的代换结合基本不等式求最值即可【详解】∵两个正数a,b满足即a+3b=1则=当且仅当时取等号.故选C【点睛】本题考查了基本不等式求最值,巧用“1”的代换是关键,属于基础题.8、B【解析】
先由函数图象与轴的相邻两个交点确定该函数的最小正周期,并利用周期公式求出的值,再将点代入函数解析式,并结合函数在该点附近的单调性求出的值,即可得出答案。【详解】解:由图象可得函数的周期∴,得,将代入可得,∴(注意此点位于函数减区间上)∴由可得,∴点的坐标是,故选:B.【点睛】本题考查利用图象求三角函数的解析式,其步骤如下:①求、:,;②求:利用一些关键点求出最小正周期,再由公式求出;③求:代入关键点求出初相,如果代对称中心点要注意附近的单调性。9、D【解析】
首先根据正弦定理得到,比较与的大小关系即可判定A,B错误,再根据大边对大角即可判定C错误,根据勾股定理即可判定D正确.【详解】对于A,因为,,所以,有两个解,故A错误.对于B,因为,,所以,无解,故B错误.对于C,因为,所以,即,,所以无解,故C错误.对于D,,为直角三角形,故D正确.故选:D【点睛】本题主要考查三角形个数的判断,利用正弦定理判断为解题的关键,属于简单题.10、C【解析】因为等差数列中,,所以,有,所以当时前项和取最小值.故选C.二、填空题:本大题共6小题,每小题5分,共30分。11、16【解析】
依次代入即可求得结果.【详解】令,则;令,则;令,则;令,则本题正确结果:【点睛】本题考查根据数列的递推公式求解数列中的项,属于基础题.12、【解析】在△ABC中,,,在△AMC中,,由正弦定理可得,解得,在Rt△AMN中.13、2【解析】
由向量的模长公式,计算得到答案.【详解】因为向量,所以,所以答案为.【点睛】本题考查向量的模长公式,属于简单题.14、或【解析】
求出圆的圆心与半径分别为:,,分别设出直线斜率存在与不存在情况下的直线方程,利用点到直线的距离等于半径即可得到答案.【详解】由圆的一般方程得到圆的圆心和半径分别为;,;(1)当过点的切线斜率不存在时,切线方程为:,此时圆心到直线的距离,故不与圆相切,不满足题意;(2)当过点的切线的斜率存在时,设切线方程为:,即为;由于直线与圆相切,所以圆心到切线的距离等于半径,即,解得:或,所以切线的方程为或;综述所述:切线的方程或【点睛】本题考查过圆外一点求圆的切线方程,解题关键是设出切线方程,利用圆心到切线的距离等于半径得到关系式,属于中档题.15、【解析】
由面面垂直的性质定理可得面,再结合三棱锥的体积的求法求解即可.【详解】解:取中点,连接,因为四边形为边长为1的正方形,则,即,又平面⊥平面ABC,由面面垂直的性质定理可得:面,且,则,故答案为:.【点睛】本题考查了三棱锥的体积的求法,重点考查了面面垂直的性质定理,属中档题.16、【解析】
采用分离常数法对所给极限式变形,可得到极限值.【详解】.【点睛】本题考查分离常数法求极限,难度较易.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见证明;(2)【解析】
(1)根据EF是△BDP的中位线可知EF∥DP,即可利用线线平行得出线面平行;(2)取AB中点O,连接PO,DO,可证明∠PDO为DP与平面ABCD所成角,在Rt△DOP中求解即可.【详解】(1)因为E为AC中点,所以DB与AC交于点E.因为E,F分别为AC,BP中点,所以EF是△BDP的中位线,所以EF∥DP.又DP⊂平面PCD,EF⊄平面PCD,所以EF∥平面PCD.(2)取AB中点O,连接PO,DO∵△PAB为正三角形,∴PO⊥AB,又∵平面ABCD⊥平面PAB∴PO⊥平面ABCD,∴DP在平面ABCD内的射影为DO,∠PDO为DP与平面ABCD所成角,在Rt△DOP中,sin∠PDO=,∴直线DP与平面ABCD所成角的正弦值为【点睛】本题主要考查了线面平行的证明,线面角的求法,属于中档题.18、(Ⅰ)(Ⅱ).【解析】
(Ⅰ)求解二次不等式从而求得集合A,利用指数函数的图像求出集合B,再进行并集运算即可;(Ⅱ)依次求出,,即可写出集合C的子集.【详解】(Ⅰ)由,得,即有,于是.作出函数的图象可知,于是,所以,(Ⅱ),,集合的所有子集是:.【点睛】本题考查集合的基本运算,集合的子集,属于基础题.19、(I);(II);;(III).【解析】
(I)根据方程ax2+(b-1)x=0有唯一解,以及列方程求解即可;(II)根据二次函数的性质,函数的单调性,即可求得求得最值,(III)分离参数,构造函数,求出函数的最值即可.【详解】∵,∴,∴.(I)方程有唯一实数根,即方程有唯一解,∴,解得∴(II)∵,∴,,若,若.(III)解法一、当时,不等式恒成立,即:在区间上恒成立,设,显然函数在区间上是减函数,,当且仅当时,不等式在区间上恒成立,因此.解法二:因为当时,不等式恒成立,所以时,的最小值,当时,在单调递减,恒成立,而,所以时不符合题意.当时,在单调递增,的最小值为,所以,即即可,综上所述,.20、(1);(2)【解析】
(1)利用正弦定理进行边化角,然后得到的值,从而得到;(2)根据余弦定理,得到关于的方程,从而得到,再根据面积公式,得到答案.【详解】(1)在中,根据正弦定理,由,可得,所以,因为为内角,所以,所以因为为内角,所以,(2)在中,,,由余弦定理得解得,所以.【点睛】本题考查正弦定理、余弦定理解三角形,三角形面积公式,属于简单题.21、(1)3x﹣4y﹣19=1(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度企业场地租赁合同书样式
- 2024年度艺术品交易保证金合同
- 2024年度生产场地租赁及运营管理合同
- 2024年度企业融资借款合同书样本
- 邓小平理论概论课件
- 2024年度技术服务合同标的为云计算平台
- 2024年度建筑施工成本控制合同2篇
- 2024年度版权许可使用合同标的的许可费用及支付方式
- 宋词二首课件
- 2024年度宠物店知识产权保护合同:宠物店与知识产权公司之间的保护协议
- 人力资源管理:基于创新创业视角学习通超星期末考试答案章节答案2024年
- 风电场护栏网施工方案
- 足球校本课程开发方案
- 2024年全国半导体行业职业技能竞赛(半导体芯片制造工赛项)理论考试题库(含答案)
- 《地方导游基础知识》1.4 山西地方导游基础知识-题库及答案
- 北师大版数学一年级上册期中考试试题
- 钢结构厂房施工方案
- 房屋租赁合同excel表
- 【历史】2024-2025学年部编版七年级上册历史知识清单
- 浙江省杭州市2023-2024学年四年级上学期语文期中试卷(含答案)
- 赛迪顾问:中国安全大模型技术与应用研究报告2023
评论
0/150
提交评论