2025届陕西省西安市西安电子科技大附中高一数学第二学期期末统考试题含解析_第1页
2025届陕西省西安市西安电子科技大附中高一数学第二学期期末统考试题含解析_第2页
2025届陕西省西安市西安电子科技大附中高一数学第二学期期末统考试题含解析_第3页
2025届陕西省西安市西安电子科技大附中高一数学第二学期期末统考试题含解析_第4页
2025届陕西省西安市西安电子科技大附中高一数学第二学期期末统考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届陕西省西安市西安电子科技大附中高一数学第二学期期末统考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.对变量有观测数据,得散点图(1);对变量有观测数据(,得散点图(2),由这两个散点图可以判断()A.变量与正相关,与正相关 B.变量与正相关,与负相关C.变量与负相关,与正相关 D.变量与负相关,与负相关2.在中,,,分别是角,,的对边,且满足,那么的形状一定是()A.等腰三角形 B.直角三角形 C.等腰或直角三角形 D.等腰直角三角形3.如图所示的图形是弧三角形,又叫莱洛三角形,它是分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧得到的封闭图形.在此图形内随机取一点,则此点取自等边三角形内的概率是()A.32π-3 B.34π-234.设是上的偶函数,且在上是减函数,若且,则()A. B.C. D.与大小不确定5.从甲、乙、丙、丁四人中随机选出人参加志愿活动,则甲被选中的概率为()A. B. C. D.6.已知等比数列的前n项和为,若,,则()A. B. C.1 D.27.已知函数,则下列说法正确的是()A.图像的对称中心是B.在定义域内是增函数C.是奇函数D.图像的对称轴是8.两数与的等比中项是()A.1 B.-1 C.±1 D.9.在长为12cm的线段AB上任取一点C.现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积大于20cm2的概率为A. B. C. D.10.计算的值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图所示,在正三棱柱中,是的中点,,则异面直线与所成的角为____.12.已知向量,,若,则实数___________.13.已知直线与圆相交于,两点,则=______.14.在直角梯形.中,,分别为的中点,以为圆心,为半径的圆交于,点在上运动(如图).若,其中,则的最大值是________.15.若数列满足,且对于任意的,都有,则___;数列前10项的和____.16.如图,在中,,,,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设二次函数.(1)若对任意实数,恒成立,求实数x的取值范围;(2)若存在,使得成立,求实数m的取值范围.18.已知函数,设其最小值为(1)求;(2)若,求a以及此时的最大值.19.已知,为常数,且,,.(I)若方程有唯一实数根,求函数的解析式.(II)当时,求函数在区间上的最大值与最小值.(III)当时,不等式恒成立,求实数的取值范围.20.如图,在平面四边形中,为的角平分线,,,.(1)求;(2)若的面积,求的长.21.已知函数在一个周期内的图像经过点和点,且的图像有一条对称轴为.(1)求的解析式及最小正周期;(2)求的单调递增区间.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

根据增大时的变化趋势可确定结果.【详解】图(1)中,随着的增大,的变化趋势是逐渐在减小,因此变量与负相关;图(2)中,随着的增大,的变化趋势是逐渐在增大,因此变量与正相关.故选:【点睛】本题考查根据散点图判断相关关系的问题,属于基础题.2、C【解析】

由正弦定理,可得,.,或,或,即或,即三角形为等腰三角形或直角三角形,故选C.考点:1正弦定理;2正弦的二倍角公式.3、D【解析】

求出以A为圆心,以边长为半径,圆心角为∠BAC的扇形的面积,根据图形的性质,可知它的3倍减去2倍的等边三角形ABC【详解】设等边三角形ABC的边长为a,设以A为圆心,以边长为半径,圆心角为∠BAC的扇形的面积为S1,则S1=莱洛三角形面积为S,则S=3S在此图形内随机取一点,则此点取自等边三角形内的概率为P,P=S【点睛】本题考查了几何概型.解决本题的关键是正确求出莱洛三角形的面积.考查了运算能力.4、A【解析】试题分析:由是上的偶函数,且在上是减函数,所以在上是增函数,因为且,所以,所以,又因为,所以,故选A.考点:函数奇偶性与单调性的综合应用.【方法点晴】本题主要考查了函数的单调性与奇偶性的综合应用,其中解答中涉及函数的单调性和函数奇偶性的应用等知识点,本题的解答中先利用偶函数的图象的对称性得出在上是增函数,然后在利用题设条案件把自变量转化到区间上是解答的关键,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,试题有一定的难度,属于中档试题.5、C【解析】分析:用列举法得出甲、乙、丙、丁四人中随机选出人参加志愿活动的事件数,从而可求甲被选中的概率.详解:从甲、乙、丙、丁四人中随机选出人参加志愿活动,包括:甲乙;甲丙;甲丁;乙丙;乙丁;丙丁6种情况,甲被选中的概率为.故选C.点睛:本题考查用列举法求基本事件的概率,解题的关键是确定基本事件,属于基础题.6、C【解析】

利用等比数列的前项和公式列出方程组,能求出首项.【详解】等比数列的前项和为,,,,解得,.故选:.【点睛】本题考查等比数列的首项的求法,考查等比数列的性质等基础知识,考查运算求解能力,是基础题.7、A【解析】

根据正切函数的图象与性质逐一判断即可.【详解】.,由得,,的对称中心为,,故正确;.在定义域内不是增函数,故错误;.为非奇非偶函数,故错误;.的图象不是轴对称图形,故错误.故选.【点睛】本题考查了正切函数的图象与性质,考查了整体思想,意在考查学生对这些知识的理解掌握水平,属基础题.8、C【解析】试题分析:设两数的等比中项为,等比中项为-1或1考点:等比中项9、C【解析】试题分析:设AC=x,则BC=12-x(0<x<12)矩形的面积S=x(12-x)>20∴x2-12x+20<0∴2<x<10由几何概率的求解公式可得,矩形面积大于20cm2的概率考点:几何概型10、D【解析】

直接由二倍角的余弦公式,即可得解.【详解】由二倍角公式得:,故选D.【点睛】本题考查了二倍角的余弦公式,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

要求两条异面直线所成的角,需要通过见中点找中点的方法,找出边的中点,连接出中位线,得到平行,从而得到两条异面直线所成的角,得到角以后,再在三角形中求出角.【详解】取的中点E,连AE,,易证,∴为异面直线与所成角,设等边三角形边长为,易算得∴在∴故答案为【点睛】本题考查异面直线所成的角,本题是一个典型的异面直线所成的角的问题,解答时也是应用典型的见中点找中点的方法,注意求角的三个环节,一画,二证,三求.12、【解析】

由垂直关系可得数量积等于零,根据数量积坐标运算构造方程求得结果.【详解】,解得:故答案为:【点睛】本题考查根据向量垂直关系求解参数值的问题,关键是明确两向量垂直,则向量数量积为零.13、.【解析】

将圆的方程化为标准方程,由点到直线距离公式求得弦心距,再结合垂径定理即可求得.【详解】圆,变形可得所以圆心坐标为,半径直线,变形可得由点到直线距离公式可得弦心距为由垂径定理可知故答案为:【点睛】本题考查了直线与圆相交时的弦长求法,点到直线距离公式的应用及垂径定理的用法,属于基础题.14、【解析】

建立直角坐标系,设,根据,表示出,结合三角函数相关知识即可求得最大值.【详解】建立如图所示的平面直角坐标系:,分别为的中点,,以为圆心,为半径的圆交于,点在上运动,设,,即,,所以,两式相加:,即,要取得最大值,即当时,故答案为:【点睛】此题考查平面向量线性运算,处理平面几何相关问题,涉及三角换元,转化为求解三角函数的最值问题.15、,【解析】试题分析:由得由得,所以数列为等比数列,因此考点:等比数列通项与和项16、【解析】

先将转化为和为基底的两组向量,然后通过数量积即可得到答案.【详解】,.【点睛】本题主要考查向量的基本运算,数量积运算,意在考查学生的分析能力和计算能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)是关于m的一次函数,计算得到答案.(2)易知,讨论和两种情况计算得到答案.【详解】(1)对任意实数,恒成立,即对任意实数恒成立,是关于m的一次函数,,解得或,所以实数x的取值范围是.(2)存在,使得成立,即,显然.(i)当时,要使成立,即需成立,即需成立.,(当且仅当时等号成立),,.(ii)当时,要使成立,即需成立,即需成立,,(当且仅当时等号成立),.综上得实数m的取值范围是.【点睛】本题考查了恒成立问题和存在性问题,意在考查学生的综合应用能力.18、(1)(2),【解析】

(1)利用同角三角函数间的基本关系化简函数解析式后,分三种情况、和讨论,根据二次函数求最小值的方法求出的最小值的值即可;(2)把代入到第一问的的第二和第三个解析式中,求出的值,代入中得到的解析式,利用配方可得的最大值.【详解】(1)由题意,函数∵,∴,若,即,则当时,取得最小值,.若,即,则当时,取得最小值,.若即,则当时,取得最小值,,∴.(2)由(1)及题意,得当时,令,解得或(舍去);当时,令,解得(舍去),综上,,此时,则时,取得最大值.【点睛】本题主要考查了利用二次函数的方法求三角函数的最值,要求熟练掌握余弦函数图象与性质,其中解答中合理转化为二次函数的图象与性质进行求解是解答的关键,着重考查了转化思想,以及推理与运算能力,属于中档试题.19、(I);(II);;(III).【解析】

(I)根据方程ax2+(b-1)x=0有唯一解,以及列方程求解即可;(II)根据二次函数的性质,函数的单调性,即可求得求得最值,(III)分离参数,构造函数,求出函数的最值即可.【详解】∵,∴,∴.(I)方程有唯一实数根,即方程有唯一解,∴,解得∴(II)∵,∴,,若,若.(III)解法一、当时,不等式恒成立,即:在区间上恒成立,设,显然函数在区间上是减函数,,当且仅当时,不等式在区间上恒成立,因此.解法二:因为当时,不等式恒成立,所以时,的最小值,当时,在单调递减,恒成立,而,所以时不符合题意.当时,在单调递增,的最小值为,所以,即即可,综上所述,.20、(1),(2)【解析】

(1)首先根据正弦定理得到,得到,在求即可.(2)首先根据得到,在根据余弦定理即可求出的长.【详解】(1)在中,,即.,或(舍去).所以.(2),.在中,由余弦定理知:【点睛】本题第一问考查正弦定理,第二问考查余弦定理,同时考查了学生的计算能力,属于中档题.21、(1),;(2).【解析】

(1)由函数的图象经过点且f(x)的图象有一条对称轴为直线,可得最大值A,且能得周期并求得ω,由五点法作图求出的值,可得函数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论