鹤岗市重点中学2025届高一数学第二学期期末教学质量检测试题含解析_第1页
鹤岗市重点中学2025届高一数学第二学期期末教学质量检测试题含解析_第2页
鹤岗市重点中学2025届高一数学第二学期期末教学质量检测试题含解析_第3页
鹤岗市重点中学2025届高一数学第二学期期末教学质量检测试题含解析_第4页
鹤岗市重点中学2025届高一数学第二学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

鹤岗市重点中学2025届高一数学第二学期期末教学质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,,是的内心,若,其中,动点的轨迹所覆盖的面积为()A. B. C. D.2.在集合且中任取一个元素,所取元素x恰好满足方程的概率是()A. B. C. D.3.在△ABC中,角A、B、C所对的边分别为a、b、c,若acosA=bcosB,则△ABC的形状为()A.等腰三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形4.在中,,则是()A.等边三角形 B.直角三角形C.等腰三角形 D.等腰直角三角形5.电视台某节目组要从名观众中抽取名幸运观众.先用简单随机抽样从人中剔除人,剩下的人再按系统抽样方法抽取人,则在人中,每个人被抽取的可能性()A.都相等,且为 B.都相等,且为C.均不相等 D.不全相等6.在等差数列中,,则等于()A.2 B.18 C.4 D.97.已知数列为等差数列,若,则()A. B. C. D.8.已知等差数列的前项和为,,当时,的值为()A.21 B.22 C.23 D.249.为等差数列的前项和,且,.记,其中表示不超过的最大整数,如,.数列的前项和为()A. B. C. D.10.已知中,,,若,则的坐标为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.过点且与直线l:垂直的直线方程为______.(请用一般式表示)12.已知算式,在方框中填入两个正整数,使它们的乘积最大,则这两个正整数之和是___.13.正项等比数列中,,,则公比__________.14.对任意实数,不等式恒成立,则实数的取值范围是____.15.如图,已知圆,六边形为圆的内接正六边形,点为边的中点,当六边形绕圆心转动时,的取值范围是________.16.已知为直线上一点,过作圆的切线,则切线长最短时的切线方程为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.近年来,我国自主研发的长征系列火箭的频频发射成功,标志着我国在该领域已逐步达到世界一流水平.火箭推进剂的质量为,去除推进剂后的火箭有效载荷质量为,火箭的飞行速度为,初始速度为,已知其关系式为齐奥尔科夫斯基公式:,其中是火箭发动机喷流相对火箭的速度,假设,,,是以为底的自然对数,,.(1)如果希望火箭飞行速度分别达到第一宇宙速度、第二宇宙速度、第三宇宙速度时,求的值(精确到小数点后面1位).(2)如果希望达到,但火箭起飞质量最大值为,请问的最小值为多少(精确到小数点后面1位)?由此指出其实际意义.18.如图,在四棱锥P~ABCD中,底面ABCD为矩形,E,F分别为AD,PB的中点,PE⊥平面ABCD,AP⊥DP,AP=DP.(1)求证:EF∥平面PCD;(2)设G为AB中点,求证:平面EFG⊥平面PCD.19.在中,角的对边分别为,且.(1)求角A的大小;(2)若,求的面积.20.已知等差数列中,与的等差中项为,.(1)求的通项公式;(2)令,求证:数列的前项和.21.在中,已知,是边上的一点,,,.(1)求的大小;(2)求的长.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

由且,易知动点的轨迹为以为邻边的平行四边形的内部(含边界),在中,由,利用余弦定理求得边,再由和,求得内切圆的半径,从而得到,再由动点的轨迹所覆盖的面积得解.【详解】因为且,根据向量加法的平行四边形运算法则,所以动点的轨迹为以为邻边的平行四边形的内部(含边界),因为在中,,所以由余弦定理得:,所以,即,解得:,,所以.设的内切圆的半径为,所以所以.所以.所以动点的轨迹所覆盖的面积为:.故选:A【点睛】本题主要考查了动点轨迹所覆盖的面积的求及正弦定理,余弦定理的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.2、B【解析】

写出集合中的元素,分别判断是否满足即可得解.【详解】集合且的元素,,,,,,.基本事件总数为,满足方程的基本事件数为.故所求概率.故选:B.【点睛】本题考查了古典概型概率的求解,属于基础题.3、C【解析】

利用正弦定理由acosA=bcosB,可得sinAcosA=sinBcosB,再利用二倍角的正弦即可判断△ABC的形状.【详解】在△ABC中,∵acosA=bcosB,∴由正弦定理得:sinAcosA=sinBcosB,即sin2A=sin2B,∴2A=2B或2A+2B=π,∴A=B或A+B=,∴△ABC的形状为等腰三角形或直角三角形.故选C.考点:三角形的形状判断.4、C【解析】

由二倍角公式可得,,再根据诱导公式可得,然后利用两角和与差的余弦公式,即可将化简成,所以,即可求得答案.【详解】因为,,所以,,即,.故选:C.【点睛】本题主要考查利用二倍角公式,两角和与差的余弦公式进行三角恒等变换,意在考查学生的数学运算能力,属于基础题.5、A【解析】

根据随机抽样等可能抽取的性质即可求解.【详解】由随机抽样等可能抽取,可知每个个体被抽取的可能性相等,故抽取的概率为.故选:A【点睛】本题考查了随机抽样的特点,属于基础题.6、D【解析】

利用等差数列性质得到,,计算得到答案.【详解】等差数列中,故选:D【点睛】本题考查了等差数列的计算,利用性质可以简化运算,是解题的关键.7、D【解析】

由等差数列的性质可得a7=,而tan(a2+a12)=tan(2a7),代值由三角函数公式化简可得.【详解】∵数列{an}为等差数列且a1+a7+a13=4π,∴a1+a7+a13=3a7=4π,解得a7=,∴tan(a2+a12)=tan(2a7)=tan=tan(3π﹣)=﹣tan=﹣故选D.【点睛】本题考查等差数列的性质,涉及三角函数中特殊角的正切函数值的运算,属基础题.8、B【解析】

由,得,按或分两种情况,讨论当时,求的值.【详解】已知等差数列的前项和为,由,得,当时,有,得,,∴时,此时.当时,有,得,,∴时,此时.故选:B【点睛】本题考查等差数列的求和公式及其性质的应用,也考查分类讨论的思想,属于基础题.9、D【解析】

利用等差数列的通项公式与求和公式可得,再利用,可得,,.即可得出.【详解】解:为等差数列的前项和,且,,.可得,则公差.,,则,,,.数列的前项和为:.故选:.【点睛】本题考查了等差数列的通项公式与求和公式、对数运算性质、取整函数,考查了推理能力与计算能力,属于中档题.10、A【解析】

根据,,可得;由可得M为BC中点,即可求得的坐标,进而利用即可求解.【详解】因为,所以因为,即M为BC中点所以所以所以选A【点睛】本题考查了向量的减法运算和线性运算,向量的坐标运算,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

与直线垂直的直线方程可设为,再将点的坐标代入运算即可得解.【详解】解:与直线l:垂直的直线方程可设为,又该直线过点,则,则,即点且与直线l:垂直的直线方程为,故答案为:.【点睛】本题考查了与已知直线垂直的直线方程的求法,属基础题.12、.【解析】

设填入的数从左到右依次为,则,利用基本不等式可求得的最大值及此时的和.【详解】设在方框中填入的两个正整数从左到右依次为,则,于是,,当且仅当时取等号,此时.故答案为:15【点睛】本题考查基本不等式成立的条件,属于基础题.13、【解析】

根据题意,由等比数列的性质可得,进而分析可得答案.【详解】根据题意,等比数列中,,则,又由数列是正项的等比数列,所以.【点睛】本题主要考查了等比数列的通项公式的应用,其中解答中熟记等比数列的通项公式,以及注意数列是正项等比数列是解答的关键,着重考查了推理与运算能力,属于基础题.14、【解析】

分别在和两种情况下进行讨论,当时,根据二次函数图像可得不等式组,从而求得结果.【详解】①当,即时,不等式为:,恒成立,则满足题意②当,即时,不等式恒成立则需:解得:综上所述:本题正确结果:【点睛】本题考查不等式恒成立问题的求解,易错点是忽略不等式是否为一元二次不等式,造成丢根;处理一元二次不等式恒成立问题的关键是结合二次函数图象来得到不等关系,属于常考题型.15、【解析】

先求出,再化简得即得的取值范围.【详解】由题得OM=,由题得由题得..所以的取值范围是.故答案为【点睛】本题主要考查平面向量的运算和数量积运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.16、或【解析】

利用切线长最短时,取最小值找点:即过圆心作直线的垂线,求出垂足点.就切线的斜率是否存在分类讨论,结合圆心到切线的距离等于半径得出切线的方程.【详解】设切线长为,则,所以当切线长取最小值时,取最小值,过圆心作直线的垂线,则点为垂足点,此时,直线的方程为,联立,得,点的坐标为.①若切线的斜率不存在,此时切线的方程为,圆心到该直线的距离为,合乎题意;②若切线的斜率存在,设切线的方程为,即.由题意可得,化简得,解得,此时,所求切线的方程为,即.综上所述,所求切线方程为或,故答案为或.【点睛】本题考查过点的圆的切线方程的求解,考查圆的切线长相关问题,在过点引圆的切线问题时,要对直线的斜率是否存在进行分类讨论,另外就是将直线与圆相切转化为圆心到直线的距离等于半径长,考查分析问题与解决问题的能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)见解析【解析】

(1)弄清题意,将相关数据代入齐奥尔科夫斯基公式:,即可得出各个等级的速度对应的的值;(2)弄清题意与相关名词,火箭起飞质量即为,将公式变形,分离出,解不等式即可得,的最小值为.【详解】(1)由题意可得,,,且,,当达到第一宇宙速度时,有,;当达到第二宇宙速度时,有,;当达到第三宇宙速度时,有,.(2)因为希望达到,但火箭起飞质量最大值为,,,即,得,的最小值为比较(1)中当达到第三宇宙速度时,;火箭起飞质量为,此时,达到,但火箭起飞质量最大值为,的最小值为.由以上说明实际意义为:不是火箭的推进剂质量越大,火箭达到的速度越大,当减少推进剂质量,增大火箭发动机喷流相对火箭的速度,同样可以达到想要的速度.【点睛】本题是一个典型的数学模型的应用问题,用数学的知识解决实际问题,这类题目关键是弄清题意;建立适当的函数模型进行解答.属于中档题.18、(1)证明见解析(2)证明见解析【解析】

(1)取的中点,连接,通过证明四边形为平行四边形,证得,由此证得平面.(2)通过证明,证得平面,由此证得平面,从而证得平面平面.【详解】(1)证明:取PC的中点H,连接FH则FH∥BC,FH,又ED∥BC,ED,∴ED∥FH,ED=FH,∴四边形EFHD为平行四边形,∴EF∥DH,又DH⊂平面PCD,EF⊄平面PCD,∴EF∥平面PCD;(2)证明:∵PE⊥平面ABCD,CD⊥AD,∴CD⊥AP(三垂线定理),又AP⊥PD,∴AP⊥平面PCD,又∵GF∥AP,∴GF⊥平面PCD,∴平面EFG⊥平面PCD.【点睛】本小题主要考查线面平行的证明,考查面面垂直的证明,考查空间想象能力和逻辑推理能力,属于中档题.19、(1)A=;(2).【解析】

(1)由正弦定理将角关系转化为变关系,再利用余弦定理得到答案.(2)利用余弦定理得到,代入面积公式得到答案.【详解】解:(1)因为所以由正弦定理可得整理可得左右同除以得到,即A=(2)由余弦定理,得,故,所以三角形的面积.【点睛】本题考查了是正弦定理,余弦定理,面积公式,意在考查学生的计算能力.20、(1)(2)见解析【解析】

(1)利用和表示出和,解方程求得和;根据等差数列通项公式求得结果;(2)整理出的通项公式,利用裂项相消法可求得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论