2025届安徽省淮北市高一数学第二学期期末教学质量检测试题含解析_第1页
2025届安徽省淮北市高一数学第二学期期末教学质量检测试题含解析_第2页
2025届安徽省淮北市高一数学第二学期期末教学质量检测试题含解析_第3页
2025届安徽省淮北市高一数学第二学期期末教学质量检测试题含解析_第4页
2025届安徽省淮北市高一数学第二学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届安徽省淮北市高一数学第二学期期末教学质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数的部分图象如图所示,则函数在上的最大值为()A. B. C. D.12.已知,集合,则A. B. C. D.3.若对任意的正数a,b满足,则的最小值为A.6 B.8 C.12 D.244.若且,则下列四个不等式:①,②,③,④中,一定成立的是()A.①② B.③④ C.②③ D.①②③④5.在等比数列中,,,则等于()A.256 B.-256 C.128 D.-1286.一组数平均数是,方差是,则另一组数,的平均数和方差分别是()A. B.C. D.7.下列函数中最小值为4的是()A. B.C. D.8.某产品的广告费用x与销售额y的统计数据如下表根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售额为()A.63.6万元 B.65.5万元 C.67.7万元 D.72.0万元9.大衍数列,来源于《乾坤普》中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两翼数量总和,是中国传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0,2,4,8,12,18,24,32,40,50,……则此数列的第20项为()A.200 B.180 C.128 D.16210.在中,,则的形状是()A.等腰三角形 B.直角三角形 C.等腰直角三角形 D.等腰或直角三角形二、填空题:本大题共6小题,每小题5分,共30分。11.已知角的顶点在坐标原点,始边与轴正半轴重合,终边经过点,则______.12.利用直线与圆的有关知识求函数的最小值为_______.13.已知一个几何体的三视图如图所示,其中正视图是等腰直角三角形,则该几何体的体积为__________.14.函数的最大值为.15.P是棱长为4的正方体的棱的中点,沿正方体表面从点A到点P的最短路程是_______.16.执行如图所示的程序框图,则输出的S的值是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角所对的边为,且满足(1)求角的值;(2)若且,求的取值范围.18.设平面向量,,函数.(Ⅰ)求时,函数的单调递增区间;(Ⅱ)若锐角满足,求的值.19.已知向量,,且(1)求·及;(2)若,求的最小值20.已知直线经过点,且与轴正半轴交于点,与轴正半轴交于点,为坐标原点.(1)若点到直线的距离为4,求直线的方程;(2)求面积的最小值.21.已知分别是的三个内角所对的边.(1)若的面积,求的值;(2)若,且,试判断的形状.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

由图象求出T、ω和φ的值,写出f(x)的解析式,再求x∈[6,10]时函数f(x)的最大值.【详解】由图象可知,5﹣3=2,解得T=8,由T8,解得ω;∴函数的解析式是f(x)=sin(x+φ);∵(5,1)在f(x)的图象上,有1=sin(φ)∴φ=2kπ,k∈Z;φ=2kπ,k∈Z;又﹣π<φ<0,∴φ;∴函数的解析式是f(x)=sin(x)当x∈[6,10]时,x∈[,],∴sin(x)∈[﹣1,];∴函数f(x)的最大值是.故选A.【点睛】本题考查了三角函数的图象与性质的应用问题,熟记图像与性质是关键,是基础题.2、D【解析】

先求出集合A,由此能求出∁UA.【详解】∵U=R,集合A={x|1﹣2x>0}={x|x},∴∁UA={x|x}.故选:D.【点睛】本题考查补集的求法,考查补集定义、不等式性质等基础知识,考查运算求解能力,是基础题.3、C【解析】

利用“1”的代换结合基本不等式求最值即可【详解】∵两个正数a,b满足即a+3b=1则=当且仅当时取等号.故选C【点睛】本题考查了基本不等式求最值,巧用“1”的代换是关键,属于基础题.4、C【解析】

根据且,可得,,且,,根据不等式的性质可逐一作出判断.【详解】由且,可得,∴,且,,由此可得①当a=0时,不成立,②由,,则成立,③由,,可得成立,④由,若,则不成立,因此,一定成立的是②③,故选:C.【点睛】本题考查不等式的基本性质的应用,属于基础题.5、A【解析】

先设等比数列的公比为,根据题中条件求出,进而可求出结果.【详解】设等比数列的公比为,因为,,所以,因此.故选A【点睛】本题主要考查等比数列的基本量的计算,熟记通项公式即可,属于基础题型.6、B【解析】

直接利用公式:平均值方差为,则的平均值和方差为:得到答案.【详解】平均数是,方差是,的平均数为:方差为:故答案选B【点睛】本题考查了平均数和方差的计算:平均数是,方差是,则的平均值和方差为:.7、C【解析】

对于A和D选项不能保证基本不等式中的“正数”要求,对于B选项不能保证基本不等式中的“相等”要求,即可选出答案.【详解】对于A,当时,显然不满足题意,故A错误.对于B,,,.当且仅当,即时,取得最小值.但无解,故B错误.对于D,当时,显然不满足题意,故D错误.对于C,,,.当且仅当,即时,取得最小值,故C正确.故选:C【点睛】本题主要考查基本不等式,熟练掌握基本不等式的步骤为解题的关键,属于中档题.8、B【解析】∵,∵数据的样本中心点在线性回归直线上,

回归方程中的为9.4∴线性回归方程是y=9.4x+9.1,

∴广告费用为6万元时销售额为9.4×6+9.1=65.5,

故选B.9、A【解析】

由0、2、4、8、12、18、24、32、40、50…,可得偶数项的通项公式:,即可得出.【详解】由0、2、4、8、12、18、24、32、40、50…,可得偶数项的通项公式:,则此数列第20项=2×102=1.故选:A.【点睛】本题考查了数列递推关系、通项公式、归纳法,属于基础题.10、B【解析】

将,分别代入中,整理可得,即可得到,进而得到结论【详解】由题可得,即在中,,,即又,是直角三角形,故选B【点睛】本题考查三角形形状的判定,考查和角公式,考查已知三角函数值求角二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

利用三角函数的定义可求出的值.【详解】由三角函数的定义可得,故答案为.【点睛】本题考查利用三角函数的定义求余弦值,解题的关键就是三角函数定义的应用,考查计算能力,属于基础题.12、【解析】

令得,转化为z==,再利用圆心到直线距离求最值即可【详解】令,则故转化为z==,表示上半个圆上的点到直线的距离的最小值的5倍,即故答案为3【点睛】本题考查直线与圆的位置关系,点到直线的距离公式,考查数形结合思想,是中档题13、【解析】

首先根据三视图还原几何体,再计算体积即可.【详解】由三视图知:该几何体是以底面是直角三角形,高为的三棱锥,直观图如图所示:.故答案为:【点睛】本题主要考查三视图还原直观图,同时考查了锥体的体积计算,属于简单题.14、【解析】略15、【解析】

从图形可以看出图形的展开方式有二,一是以底棱BC,CD为轴,可以看到此两种方式是对称的,所得结果一样,另外一种是以侧棱为轴展开,即以BB1,DD1为轴展开,此两种方式对称,求得结果一样,故解题时选择以BC为轴展开与BB1为轴展开两种方式验证即可【详解】由题意,若以BC为轴展开,则AP两点连成的线段所在的直角三角形的两直角边的长度分别为4,6,故两点之间的距离是若以BB1为轴展开,则AP两点连成的线段所在的直角三角形的两直角边的长度分别为2,8,故两点之间的距离是故沿正方体表面从点A到点P的最短路程是cm故答案为【点睛】本题考查多面体和旋转体表面上的最短距离问题,求解的关键是能够根据题意把求几何体表面上两点距离问题转移到平面中来求16、4【解析】

模拟程序运行,观察变量值的变化,寻找到规律周期性,确定输出结果.【详解】第1次循环:,;第2次循环:,;第3次循环:,;第4次循环:,;…;S关于i以4为周期,最后跳出循环时,此时.故答案为:4.【点睛】本题考查程序框图,考查循环结构.解题关键是由程序确定变量变化的规律:周期性.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或;(2).【解析】试题分析:(1)利用升幂公式及两角和与差的余弦公式化简已知等式,可得,从而得,注意两解;(2)由,得,利用正弦定理得,从而可变为,利用三角形的内角和把此式化为一个角的函数,再由两角和与差的正弦公式化为一个三角函数形式,由的范围()结合正弦函数性质可得取值范围.试题解析:(1)由已知,得,化简得,故或;(2)∵,∴,由正弦定理,得,故,∵,所以,,∴.18、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)利用向量的数量积结合两角和与差的三角函数化简函数为一个角的一个三角函数的形式,利用正弦函数的单调增区间,求得时函数f(x)的单调递增区间;(Ⅱ)若锐角α满足,可得cos的值,然后求的值.【详解】解:(Ⅰ).由得,其中单调递增区间为,可得,∴时f(x)的单调递增区间为.(Ⅱ),∵α为锐角,∴..【点睛】本题考查向量的数量积以及三角函数的化简求值,考查了二倍角公式的应用,考查转化思想以及计算能力,属于中档题.19、(1)见解析;(2).【解析】

(1)运用向量数量积的坐标表示,求出·;运用平面向量的坐标运算公式求出,然后求出模.(2)根据上(1)求出函数的解析式,配方,利用二次函数的性质求出最小值.【详解】(1)∵∴∴(2)∵∴∴【点睛】本题考查了平面向量数量积的坐标表示,以及平面向量的坐标加法运算公式.重点是二次函数求最小值问题.20、(1)(2)【解析】

(1)直线过定点P,故设直线l的方程为,再由点到直线的距离公式,即可解得k,得出直线方程;(2)设直线方程,,表示出A,B点的坐标,三角形面积为,根据k的取值范围即可取出面积最小值.【详解】解:(1)由题意可设直线的方程为,即,则,解得.故直线的方程为,即.(2)因为直线的方程为,所以,,则的面积为.由题意可知,则(当且仅当时,等号成立).故面积的最小值为.【点睛】本题考查求直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论