版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省成都市成都实验高级中学2025届高一数学第二学期期末统考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知是不共线的非零向量,,,,则四边形是()A.梯形 B.平行四边形 C.矩形 D.菱形2.设是两条不同的直线,是两个不同的平面,则下列叙述正确的是()①若,则;②若,则;③若,则;④若,则.A.①② B.③④ C.①③ D.②④3.下图为某市国庆节7天假期的楼房认购量与成交量的折线图,小明同学根据折线图对这7天的认购量(单位:套)与成交量(单位:套)作出如下判断:①日成交量的中位数是26;②日成交量超过日平均成交量的有2天;③认购量与日期正相关;④10月2日到10月6日认购量的分散程度比成交量的分散程度更大.则上述判断错误的个数为()A.4 B.3 C.2 D.14.设为直线,是两个不同的平面,下列说法中正确的是()A.若,则B.若,则C.若,则D.若,则5.在直角中,三条边恰好为三个连续的自然数,以三个顶点为圆心的扇形的半径为1,若在中随机地选取个点,其中有个点正好在扇形里面,则用随机模拟的方法得到的圆周率的近似值为()A. B. C. D.6.某林区改变植树计划,第一年植树增长率200%,以后每年的植树增长率都是前一年植树增长率的12,若成活率为100%,经过4A.14 B.454 C.67.与直线平行,且与直线交于轴上的同一点的直线方程是()A. B. C. D.8.记为等差数列的前n项和.若,,则等差数列的公差为()A.1 B.2 C.4 D.89.某正弦型函数的图像如图,则该函数的解析式可以为().A. B.C. D.10.设等差数列的前项和为,若公差,,则的值为()A.65 B.62 C.59 D.56二、填空题:本大题共6小题,每小题5分,共30分。11.已知双曲线:的右顶点为,以为圆心,为半径作圆,圆与双曲线的一条渐近线于交、两点,若,则的离心率为__________.12.已知函数,若函数恰有个零点,则实数的取值范围为__________.13.如图所示,已知点,单位圆上半部分上的点满足,则向量的坐标为________.14.函数,的值域为________15.已知数列是等差数列,记数列的前项和为,若,则________.16.如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆,设,则阴影部分的面积是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,四棱锥P-ABCD中,PA⊥菱形ABCD所在的平面,∠ABC=60°,E是BC的中点,M(1)求证:AE⊥平面PAD;(2)若AB=AP=2,求三棱锥P-ACM的体积.18.已知,,分别为内角,,的对边,且.(1)求角;(2)若,,求边上的高.19.在中,内角对边分别为,,,已知.(1)求的值;(2)若,,求的面积.20.如图,在直三棱柱中,,二面角为直角,为的中点.(1)求证:平面平面;(2)求直线与平面所成的角.21.已知:,,,,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
本题首先可以根据向量的运算得出,然后根据以及向量平行的相关性质即可得出四边形的形状.【详解】因为,所以,因为,是不共线的非零向量,所以且,所以四边形是梯形,故选A.【点睛】本题考查根据向量的相关性质来判断四边形的形状,考查向量的运算以及向量平行的相关性质,如果一组对边平行且不相等,那么四边形是梯形;如果对边平行且相等,那么四边形是平行四边形;相邻两边长度相等的平行四边形是菱形;相邻两边垂直的平行四边形是矩形,是简单题.2、D【解析】可以线在平面内,③可以是两相交平面内与交线平行的直线,②对④对,故选D.3、B【解析】
将国庆七天认购量和成交量从小到大排列,即可判断①;计算成交量的平均值,可由成交量数据判断②;由图可判断③;计算认购量的平均值与方差,成交量的平均值与方差,对方差比较即可判断④.【详解】国庆七天认购量从小到大依次为:91,100,105,107,112,223,276成交量从小到大依次为:8,13,16,26,32,38,166对于①,成交量的中为数为26,所以①正确;对于②,成交量的平均值为,有1天成交量超过平均值,所以②错误;对于③,由图可知认购量与日期没有正相关性,所以③错误;对于④,10月2日到10月6日认购量的平均值为方差为10月2日到10月6日成交量的平均值为方差为所以由方差性质可知,10月2日到10月6日认购量的分散程度比成交量的分散程度更小,所以④错误;综上可知,错误的为②③④故选:B【点睛】本题考查了统计的基本内容,由图示分析计算各个量,利用方差比较数据集中程度,属于基础题.4、C【解析】
画出长方体,按照选项的内容在长方体中找到相应的情况,即可得到答案【详解】对于选项A,在长方体中,任何一条棱都和它相对的两个平面平行,但这两个平面相交,所以A不正确;对于选项B,若,分别是长方体的上、下底面,在下底面所在平面中任选一条直线,都有,但,所以B不正确;对于选项D,在长方体中,令下底面为,左边侧面为,此时,在右边侧面中取一条对角线,则,但与不垂直,所以D不正确;对于选项C,设平面,且,因为,所以,又,所以,又,所以,所以C正确.【点睛】本题考查直线与平面的位置关系,属于简单题5、B【解析】由题直角中,三条边恰好为三个连续的自然数,设三边为解得以三个顶点为圆心的扇形的面积和为由题故选B.6、B【解析】
由题意知增长率形成以首项为2,公比为12的等比数列,从而第n年的增长率为12n-2,则第n【详解】由题意知增长率形成以首项为2,公比为12的等比数列,从而第n年的增长率为1则第n年的林区的树木数量为an∴a1=3a0,a因此,经过4年后,林区的树木量是原来的树木量的454【点睛】本题考查数列的性质和应用,解题的关键在于建立数列的递推关系式,然后逐项进行计算,考查分析问题和解决问题的能力,属于中等题.7、A【解析】
直线交于轴上的点为,与直线平行得到斜率,根据点斜式得到答案.【详解】与直线平行直线交于轴上的点为设直线方程为:代入交点得到即故答案选A【点睛】本题考查了直线的平行关系,直线与坐标轴的交点,属于基础题型.8、B【解析】
利用等差数列的前n项和公式、通项公式列出方程组,能求出等差数列{an}的公差.【详解】∵为等差数列的前n项和,,,∴,解得d=2,a1=5,∴等差数列的公差为2.故选:B.【点睛】本题考查等差数列的公差,此类问题根据题意设公差和首项为d、a1,列出方程组解出即可,属于基础题.9、C【解析】试题分析:由图象可得最大值为2,则A=2,周期,∴∴,又,是五点法中的第一个点,∴,∴把A,B排除,对于C:,故选C考点:本题考查函数的图象和性质点评:解决本题的关键是确定的值10、A【解析】
先求出,再利用等差数列的性质和求和公式可求.【详解】,所以,故选A.【点睛】一般地,如果为等差数列,为其前项和,则有性质:(1)若,则;(2)且;(3)且为等差数列;(4)为等差数列.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】如图所示,由题意可得|OA|=a,|AN|=|AM|=b,∵∠MAN=60°,∴|AP|=b,∴|OP|=.设双曲线C的一条渐近线y=x的倾斜角为θ,则tanθ=.又tanθ=,∴,解得a2=3b2,∴e=.答案:点睛:求双曲线的离心率的值(或范围)时,可将条件中提供的双曲线的几何关系转化为关于双曲线基本量的方程或不等式,再根据和转化为关于离心率e的方程或不等式,通过解方程或不等式求得离心率的值(或取值范围).12、【解析】
首先根据题意转化为函数与有个交点,再画出与的图象,根据图象即可得到的取值范围.【详解】有题知:函数恰有个零点,等价于函数与有个交点.当函数与相切时,即:,,,解得或(舍去).所以根据图象可知:.故答案为:【点睛】本题主要考查函数的零点问题,同时考查了学生的转化能力,体现了数形结合的思想,属于中档题.13、【解析】
设点,由和列方程组解出、的值,可得出向量的坐标.【详解】设点的坐标为,则,由,得,解得,因此,,故答案为.【点睛】本题考查向量的坐标运算,解题时要将一些条件转化为与向量坐标相关的等式,利用方程思想进行求解,考查运算求解能力,属于中等题.14、【解析】
先求的值域,再求的值域即可.【详解】因为,故,故.故答案为:【点睛】本题主要考查了余弦函数的值域与反三角函数的值域等,属于基础题型.15、1【解析】
由等差数列的求和公式和性质可得,代入已知式子可得.【详解】由等差数列的求和公式和性质可得:=,且,∴.故答案为:1.【点睛】本题考查了等差数列的求和公式及性质的应用,属于基础题.16、【解析】
:设两个半圆交于点,连接,可得直角扇形的面积等于以为直径的两个半圆的面积之和,平分,可得阴影部分的面积.【详解】解:设两个半圆交于点,连接,,∴直角扇形的面积等于以为直径的两个半圆的面积之和,由对称性可得:平分,故阴影部分的面积是:.故答案为:.【点睛】本题主要考查扇形的计算公式,相对不难.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见证明;(2)3【解析】
(1)本题首先可以通过菱形的相关性质证明出AE⊥AD,然后通过PA⊥菱形ABCD所在的平面证明出PA⊥AE,最后通过线面垂直的相关性质即可得出结果;(2)可以将三角形APM当成三棱锥P-ACM的底面,将AE当成三棱锥P-ACM的高,最后通过三棱锥的体积计算公式即可得出结果.【详解】(1)证明:连接AC,因为底面ABCD为菱形,∠ABC=60°,所以因为E是BC的中点,所以AE⊥BC,因为AD//BC,所以AE⊥AD,因为PA⊥平面ABCD,AE⊆平面ABCD,所以PA⊥AE,又因为PA∩AD=A,所以AE⊥平面PAD.(2)AB=AP=2,则AD=2,AE=3所以Vp【点睛】本题考查立体几何的相关性质,主要考查线面垂直的证明以及三棱锥体积的求法,可以通过证明平面外一条直线垂直平面内的两条相交直线来证明线面垂直,考查推理能力,是中档题.18、(1);(2)【解析】
(1)利用正弦定理化简已知条件,利用三角形内角和定理以及两角和的正弦公式化简,由此求得,进而求得的大小.(2)利用正弦定理求得,进而求得的大小,由此求得的值,根据求得边上的高.【详解】解:(1)∵∴∴∴∴即:,∴(2)由正弦定理:,∴∵∴∴∴设边上的高为,则有【点睛】本小题主要考查利用正弦定理进行边角互化,考查利用正弦定理解三角形,考查三角恒等变换,考查特殊角的三角函数值,属于中档题.19、(1)2(2)【解析】
(1)在题干等式中利用边化角思想,结合两角和的正弦公式、内角和定理以及诱导公式计算出,再利用角化边的思想可得出的比值;(2)由(1)中的结果,结合余弦定理求出和的值,再利用同角三角函数的平方关系求出,最后利用三角形的面积公式求出的面积.【详解】(1)由正弦定理得,则,所以,即,化简可得.又,所以.所以,即.(2)由(1)知.由余弦定理及,,得,.解得,因此因为,且所以因此.【点睛】在解三角形的问题时,要根据已知元素的类型合理选择正弦定理与余弦定理解三角形,除此之外,在有边和角的等式中,优先边化角,利用三角恒等变换思想化简求解,能起到简化计算的作用.20、(1)证明见详解;(2).【解析】
(1)先证明平面,再推出面面垂直;(2)由(1)可知即为所求,在三角形中求角即可.【详
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 请帖 写作课件
- 爱莲说精简课件
- 2024-2025学年初中同步测控优化设计物理八年级下册配人教版第9章 第3节 大气压强含答案
- 第三单元(复习)-三年级语文上册单元复习(统编版)
- 2024年黑龙江省绥化市中考地理真题卷及答案解析
- 西京学院《运营管理》2021-2022学年第一学期期末试卷
- 西京学院《随机过程与数理统计》2021-2022学年第一学期期末试卷
- 高质量专题教学模板
- 中班语言我想
- 西京学院《程序设计基础》2021-2022学年期末试卷
- 爱立信网管BO操作流程
- 大学生计算与信息化素养-北京林业大学中国大学mooc课后章节答案期末考试题库2023年
- 无人机导航与通信技术PPT完整全套教学课件
- 公共行政学网上学习行为300字
- 第四代篦冷机液压系统的故障与维护获奖科研报告
- 二次函数线段的最值课件
- 呼吸消化科科室现状调研总结与三年发展规划汇报
- 与复旦大学合作协议书
- 人大代表为人民
- 第五单元(知识清单)【 新教材精讲精研精思 】 七年级语文上册 (部编版)
- 文明之痕:流行病与公共卫生知到章节答案智慧树2023年四川大学
评论
0/150
提交评论