版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届新疆阿勒泰第二高级中学数学高一下期末统考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.等差数列的首项为.公差不为,若成等比数列,则数列的前项和为()A. B. C. D.2.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步并不难,次日脚痛减一半,六朝才得至其关,欲问每朝行里数,请公仔细算相还”.其意思为:“有一个人走378里路,第1天健步行走,从第2天起,因脚痛每天走的路程为前一天的一半,走了6天后到达目的地,可求出此人每天走多少里路.”那么此人第5天走的路程为()A.48里 B.24里 C.12里 D.6里3.已知函数是定义在上的偶函数,且在区间上单调递增.若实数满足,则的最大值是()A.1 B. C. D.4.已知为锐角,且满足,则()A. B. C. D.5.设变量、满足约束条件,则目标函数的最大值为()A.2 B.3 C.4 D.96.如图,在正四棱锥中,,侧面积为,则它的体积为()A.4 B.8 C. D.7.三棱锥的高,若,二面角为,为的重心,则的长为()A. B. C. D.8.已知实心铁球的半径为,将铁球熔成一个底面半径为、高为的圆柱,则()A. B. C. D.9.已知a,b,c为实数,则下列结论正确的是()A.若ac>bc>0,则a>b B.若a>b>0,则ac>bcC.若ac2>bc2,则a>b D.若a>b,则ac2>bc210.“”是“”成立的()A.充分非必要条件. B.必要非充分条件.C.充要条件. D.既非充分又非必要条件.二、填空题:本大题共6小题,每小题5分,共30分。11.若圆与圆的公共弦长为,则________.12.设当时,函数取得最大值,则______.13.在中,两直角边和斜边分别为a,b,c,若则实数x的取值范围是________.14.若,则______.15.若正实数满足,则的最大值为__________.16.函数y=tan三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,分别是所对的边,若的面积是,,.求的长.18.如下图,长方体ABCD-A1B1C1D1中,(1)当点E在AB上移动时,三棱锥D-D(2)当点E在AB上移动时,是否始终有D119.某生产企业研发了一种新产品,该产品在试销一个阶段后得到销售单价(单位:元)和销售量(单位:万件)之间的一组数据,如下表所示:销售单价/元销售量/万件(1)根据表中数据,建立关于的线性回归方程;(2)从反馈的信息来看,消费者对该产品的心理价(单位:元/件)在内,已知该产品的成本是元,那么在消费者对该产品的心理价的范围内,销售单价定为多少时,企业才能获得最大利润?(注:利润=销售收入-成本)参考数据:参考公式:20.某建筑公司用8000万元购得一块空地,计划在该地块上建造一栋至少12层、每层4000平方米的楼房.经初步估计得知,如果将楼房建为x(x≥12)层,则每平方米的平均建筑费用为Q(x)=3000+50x(单位:元).(1)求楼房每平方米的平均综合费用f(x)的解析式.(2)为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?每平方米的平均综合费用最小值是多少?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=)21.若是公差不为0的等差数列的前n项和,且成等比数列.(1)求数列的公比.(2)若,求的通项公式.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
根据等比中项定义可得;利用和表示出等式,可构造方程求得;利用等差数列求和公式求得结果.【详解】由题意得:设等差数列公差为,则即:,解得:本题正确选项:【点睛】本题考查等差数列基本量的计算,涉及到等比中项、等差数列前项和公式的应用;关键是能够构造方程求出公差,属于常考题型.2、C【解析】记每天走的路程里数为{an},由题意知{an}是公比的等比数列,由S6=378,得=378,解得:a1=192,∴=12(里).故选C.3、D【解析】由图象性质可知,,解得,故选D。4、D【解析】
由,得,,即可得到本题答案.【详解】由,得,所以,,所以.故选:D【点睛】本题主要考查两角和的正切公式的应用以及特殊角的三角函数值.5、D【解析】
由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论.【详解】画出满足约束条件的可行域,如图,画出可行域,,,,平移直线,由图可知,直线经过时目标函数有最大值,的最大值为9.故选D.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.6、A【解析】
连交于,连,根据正四棱锥的定义可得平面,取中点,连,则由侧面积和底面边长,求出侧面等腰三角形的高,在中,求出,即可求解.【详解】连交于,连,取中点,连因为正四棱锥,则平面,,侧面积,在中,,.故选:A.【点睛】本题考查正四棱锥结构特征、体积和表面积,属于基础题.7、C【解析】
根据AB=AC,取BC的中点E,连结AE,得到AE⊥BC,再由由AH⊥平面BCD,得到EH⊥BC.,所以∠GEH是二面角的平面角,然后在△GHE中,利用余弦定理求解.【详解】:如图所示:取BC的中点E,连结AE,∵AB=AC,∴AE⊥BC,且点G在中线AE上,连结HE.∵AH⊥平面BCD,∴EH⊥BC.∴∠GEH=60°.在Rt△AHE中,∵∠AEH=60°,AH=∴EH=AHtan30°=3,AE=6,GE=AE=2由余弦定理得HG2=9+4-2×3×2cos60°=7.∴HG=故选:C【点睛】本题主要考查了二面角问题,还考查了空间想象和推理论证的能力,属于中档题.8、B【解析】
根据变化前后体积相同计算得到答案.【详解】故答案选B【点睛】本题考查了球体积,圆柱体积,抓住变化前后体积不变是解题的关键.9、C【解析】
本题可根据不等式的性质以及运用特殊值法进行代入排除即可得到正确结果.【详解】由题意,可知:对于A中,可设,很明显满足,但,所以选项A不正确;对于B中,因为不知道的正负情况,所以不能直接得出,所以选项B不正确;对于C中,因为,所以,所以,所以选项C正确;对于D中,若,则不能得到,所以选项D不正确.故选:C.【点睛】本题主要考查了不等式性质的应用以及特殊值法的应用,着重考查了推理能力,属于基础题.10、A【解析】
依次分析充分性与必要性是否成立.【详解】时,而时不一定成立,所以“”是“”成立的充分非必要条件,选A.【点睛】本题考查充要关系判定,考查基本分析判断能力,属基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】将两个方程两边相减可得,即代入可得,则公共弦长为,所以,解之得,应填.12、;【解析】f(x)=sinx-2cosx==sin(x-φ),其中sinφ=,cosφ=,当x-φ=2kπ+(k∈Z)时,函数f(x)取得最大值,即θ=2kπ++φ时,函数f(x)取到最大值,所以cosθ=-sinφ=-.13、【解析】
计算得到,根据得到范围.【详解】两直角边和斜边分别为a,b,c,则,则,则,故.故答案为:.【点睛】本题考查了正弦定理和三角函数的综合应用,意在考查学生的综合应用能力.14、【解析】
,则,故答案为.15、【解析】
可利用基本不等式求的最大值.【详解】因为都是正数,由基本不等式有,所以即,当且仅当时等号成立,故的最大值为.【点睛】应用基本不等式求最值时,需遵循“一正二定三相等”,如果原代数式中没有积为定值或和为定值,则需要对给定的代数变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.16、{【解析】
解方程12【详解】由题得12x+故答案为{x|x≠2kπ+【点睛】本题主要考查正切型函数的定义域的求法,意在考查学生对该知识的理解掌握水平,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、8【解析】
利用同角三角函数的基本关系式求得,利用三角形的面积公式列方程求得,结合求得,根据余弦定理求得的长.【详解】由()得.因为的面积是,则,所以由解得.由余弦定理得,即的长是.【点睛】本小题主要考查同角三角函数的基本关系式,考查三角形的面积公式,考查余弦定理解三角形.18、(1)13【解析】(I)三棱锥D-D∵∴V(II)当点E在AB上移动时,始终有D1证明:连接AD1,∵四边形∴A1∵AE⊥平面ADD1A1,∴A1又AB∩AD1=A,AB⊂∴A1D⊥平面又D1E⊂平面∴D119、(1);(2)8.75元.【解析】
(1)根据最小二乘法求线性回归方程;(2)利用线性回归方程建立利润的函数,再求此函数的最大值.【详解】(1)关于的回归方程为.(2)利润该函数的对称轴方程是,故销售单价定为元时,企业才能获得最大利润.【点睛】本题考查线性回归方程和求利润的最值,属于基础题.20、(1);(2)该楼房应建为20层,每平方米的平均综合费用最小值为5000元.【解析】【试题分析】先建立楼房每平方米的平均综合费用函数,再应基本不等式求其最小值及取得极小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年版企业破产重整合同
- 2024年度无息个人婚礼筹备借款协议书下载3篇
- 2025年日喀则货运资格证模拟考试
- 2024年停薪留职期间员工社会保险及福利协议合同3篇
- 2025购房合同的范本 购房合同样本
- 2025年柳州货运从业资格证考试卷
- 洛阳理工学院《内科护理学2》2023-2024学年第一学期期末试卷
- 2024年墓地环境优化协议3篇
- 汽车俱乐部喷泉建设合同
- 2024年度家电品牌全国巡回展销合同范本3篇
- 【MOOC】法理学-西南政法大学 中国大学慕课MOOC答案
- 辽宁省普通高中2024-2025学年高一上学期12月联合考试语文试题(含答案)
- 储能运维安全注意事项
- 2024蜀绣行业市场趋势分析报告
- 电力法律法规培训
- 北京交通大学《成本会计》2023-2024学年第一学期期末试卷
- 2024年世界职业院校技能大赛“智能网联汽车技术组”参考试题库(含答案)
- 【课件】校园安全系列之警惕“死亡游戏”主题班会课件
- 化工企业冬季安全生产检查表格
- 2024年工程劳务分包联合协议
- 蜜雪冰城员工合同模板
评论
0/150
提交评论