版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省鹿泉一中、元氏一中、正定一中等五校2025届高一下数学期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.点、、、在同一个球的球面上,,.若四面体的体积的最大值为,则这个球的表面积为()A. B. C. D.2.下列命题中正确的是()A.相等的角终边必相同 B.终边相同的角必相等C.终边落在第一象限的角必是锐角 D.不相等的角其终边必不相同3.在中,内角A,B,C所对的边分别为a,b,c,若,,则一定是()A.直角三角形 B.钝角三角形 C.等腰直角三角形 D.等边三角形4.若,则下列结论正确的是()A.若,则 B.若,则C.若,则 D.若,则5.在中,内角的对边分别为,且,,若,则()A.2 B.3 C.4 D.6.已知,与的夹角,则在方向上的投影是()A. B. C.1 D.7.已知某区中小学学生人数如图所示,为了解学生参加社会实践活动的意向,拟采用分层抽样的方法来进行调查。若高中需抽取20名学生,则小学与初中共需抽取的人数为()A.30 B.40 C.70 D.908.在中,分别为角的对边,若,且,则边=()A. B. C. D.9.若cosα=13A.13 B.-13 C.10.化简的结果是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在中,角的对边分别为,若面积,则角__________.12.已知数列满足,(),则________.13.已知数列中,,,设,若对任意的正整数,当时,不等式恒成立,则实数的取值范围是______.14.长时间的低头,对人的身体如颈椎、眼睛等会造成定的损害,为了了解某群体中“低头族”的比例,现从该群体包含老、中、青三个年龄段的人中采用分层抽样的方法抽取人进行调查,已知这人里老、中、青三个年龄段的分配比例如图所示,则这个群体里青年人人数为_____15.在中,,,,点在线段上,若,则的面积是_____.16.如图是一个算法的流程图,则输出的的值是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直线经过两条直线:和:的交点,直线:;(1)若,求的直线方程;(2)若,求的直线方程.18.已知圆C的圆心为(1,1),直线与圆C相切.(1)求圆C的标准方程;(2)若直线过点(2,3),且被圆C所截得的弦长为2,求直线的方程.19.已知数列是公差不为0的等差数列,成等比数列.(1)求;(2)设,数列的前n项和为,求20.设Sn为数列{an}的前n项和,已知a1=3,Sn=1Sn﹣1+n(n≥1)(1)求出a1,a3的值,并证明:数列{an+1}为等比数列;(1)设bn=log1(a3n+1),数列{}的前n项和为Tn,求证:1≤18Tn<1.21.向量函数.(1)求的最小正周期及单调增区间;(2)求在区间上的最大值和最小值及取最值时的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
根据几何体的特征,小圆的圆心为,若四面体的体积取最大值,由于底面积不变,高最大时体积最大,可得与面垂直时体积最大,从而求出球的半径,即可求出球的表面积.【详解】根据题意知,、、三点均在球心的表面上,且,,,则的外接圆半径为,的面积为,小圆的圆心为,若四面体的体积取最大值,由于底面积不变,高最大时体积最大,所以,当与面垂直时体积最大,最大值为,,设球的半径为,则在直角中,,即,解得,因此,球的表面积为.故选:D.【点睛】本题考查的知识点是球内接多面体,球的表面积,其中分析出何时四面体体积取最大值,是解答的关键.2、A【解析】
根据终边相同的角的的概念可得正确的选项.【详解】终边相同的角满足,故B、D错误,终边落在第一象限的角可能是负角,故C错误,相等的角的终边必定相同,故A正确.故选:A.【点睛】本题考查终边相同的角,注意终边相同时,有,本题属于基础题.3、D【解析】
利用余弦定理、等边三角形的判定方法即可得出.【详解】由余弦定理得,则,即,所以.∵∴是等边三角形.故选D.【点睛】本题考查了余弦定理、等边三角形的判定方法,考查了推理能力与计算能力,熟练掌握余弦定理是解答本题的关键.4、D【解析】
根据不等式的基本性质逐一判断可得答案.【详解】解:A.当时,不成立,故A不正确;B.取,,则结论不成立,故B不正确;C.当时,结论不成立,故C不正确;D.若,则,故D正确.故选:D.【点睛】本题主要考查不等式的基本性质,属于基础题.5、B【解析】
利用正弦定理化简,由此求得的值.利用三角形内角和定理和两角和与差的正弦公式化简,由此求得的值,进而求得的值.【详解】利用正弦定理化简得,所以为锐角,且.由于,所以由得,化简得.若,则,故.若,则,由余弦定理得,解得.综上所述,,故选B.【点睛】本小题主要考查正弦定理、余弦定理解三角形,考查同角三角函数的基本关系式,考查三角形内角和定理,考查两角和与差的正弦公式,属于中档题.6、A【解析】
根据向量投影公式计算即可【详解】在方向上的投影是:故选:A【点睛】本题考查向量投影的概念及计算,属于基础题7、C【解析】
根据高中抽取的人数和高中总人数计算可得抽样比;利用小学和初中总人数乘以抽样比即可得到结果.【详解】由题意可得,抽样比为:则小学和初中共抽取:人本题正确选项:【点睛】本题考查分层抽样中样本数量的求解,关键是能够明确分层抽样原则,准确求解出抽样比,属于基础题.8、B【解析】
由利用正弦定理化简,再利用余弦定理表示出cosA,整理化简得a2b2+c2,与,联立即可求出b的值.【详解】由sinB=8cosAsinC,利用正弦定理化简得:b=8c•cosA,将cosA代入得:b=8c•,整理得:a2b2+c2,即a2﹣c2b2,∵a2﹣c2=3b,∴b2=3b,解得:b=1或b=0(舍去),则b=1.故选B【点睛】此题考查了正弦、余弦定理,熟练掌握定理,准确计算是解本题的关键,是中档题9、D【解析】
利用二倍角余弦公式cos2α=2【详解】由二倍角余弦公式可得cos2α=2【点睛】本题考查二倍角余弦公式的应用,着重考查学生对二倍角公式熟记和掌握情况,属于基础题.10、D【解析】
确定角的象限,结合三角恒等式,然后确定的符号,即可得到正确选项.【详解】因为为第二象限角,所以,故选D.【点睛】本题是基础题,考查同角三角函数的基本关系式,象限三角函数的符号,考查计算能力,常考题型.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据面积公式计算出的值,然后利用反三角函数求解出的值.【详解】因为,所以,则,则有:.【点睛】本题考查三角形的面积公式以及余弦定理的应用,难度较易.利用面积公式的时候要选择合适的公式进行化简,可根据所求角进行选择.12、31【解析】
根据数列的首项及递推公式依次求出、、……即可.【详解】解:,故答案为:【点睛】本题考查利用递推公式求出数列的项,属于基础题.13、【解析】∵,(,),当时,,,…,,并项相加,得:,
∴,又∵当时,也满足上式,
∴数列的通项公式为,∴
,令(),则,∵当时,恒成立,∴在上是增函数,
故当时,,即当时,,对任意的正整数,当时,不等式恒成立,则须使,即对恒成立,即的最小值,可得,∴实数的取值范围为,故答案为.点睛:本题考查数列的通项及前项和,涉及利用导数研究函数的单调性,考查运算求解能力,注意解题方法的积累,属于难题通过并项相加可知当时,进而可得数列的通项公式,裂项、并项相加可知,通过求导可知是增函数,进而问题转化为,由恒成立思想,即可得结论.14、【解析】
根据饼状图得到青年人的分配比例;利用总数乘以比例即可得到青年人的人数.【详解】由饼状图可知青年人的分配比例为:这个群体里青年人的人数为:人本题正确结果:【点睛】本题考查分层抽样知识的应用,属于基础题.15、【解析】
过作于,设,运用勾股定理和三角形的面积公式,计算可得所求值.【详解】过作于,设,,,,又,可得,即有,可得的面积为.故答案为.【点睛】本题考查解三角形,考查勾股定理的运用,以及三角形的面积公式,考查化简运算能力,属于基础题.16、【解析】由程序框图,得运行过程如下:;,结束循环,即输出的的值是7.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)先求出与的交点,再利用两直线平行斜率相等求直线l(2)利用两直线垂直斜率乘积等于-1求直线l【详解】(1)由,得,∴与的交点为.设与直线平行的直线为,则,∴.∴所求直线方程为.(2)设与直线垂直的直线为,则,解得.∴所求直线方程为.【点睛】两直线平行斜率相等,两直线垂直斜率乘积等于-1.18、(1);(2)或.【解析】
(1)利用点到直线的距离可得:圆心到直线的距离.根据直线与圆相切,可得.即可得出圆的标准方程.(2)①当直线的斜率存在时,设直线的方程:,即:,可得圆心到直线的距离,又,可得:.即可得出直线的方程.②当的斜率不存在时,,代入圆的方程可得:,解得可得弦长,即可验证是否满足条件.【详解】(1)圆心到直线的距离.直线与圆相切,.圆的标准方程为:.(2)①当直线的斜率存在时,设直线的方程:,即:,,又,.解得:.直线的方程为:.②当的斜率不存在时,,代入圆的方程可得:,解得,可得弦长,满足条件.综上所述的方程为:或.【点睛】本题考查直线与圆的相切的性质、点到直线的距离公式、弦长公式、分类讨论方法,考查推理能力与计算能力,属于中档题.19、(1)(2)【解析】
(1)根据已知条件求出,再写出等差数列的通项得解;(2)利用分组求和求.【详解】解:(1)设数列的首项为,公差为,则.因为成等比数列,所以,化简得又因为,所以,又因为,所以.所以.(2)根据(1)可知,【点睛】本题主要考查等差数列通项的求法,考查等差等比数列前n项和的计算和分组求和,意在考查学生对这些知识的理解掌握水平,属于基础题.20、(1)见解析;(1)见解析【解析】
(1)可令求得的值;再由数列的递推式,作差可得,可得数列为首项为1,公比为1的等比数列;(1)由(1)求得,,再由数列的裂项相消求和,可得,再由不等式的性质即可得证.【详解】(1)当时,,即,∴,当时,,即,∴,∵,∴,,∴,∴,又∵,,∴,∴,∴数列是首项为,公比为1的等比数列.(1)由(1)可知,所以,所以,,,,所以,所以,即.【点睛】本题主要考查了数列的递推式的运用,考
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中老年疾病康复治疗
- 2024培训合同协议书范本(公司与培训机构)
- 2024认定阴阳合同效力的方法
- 2024至2030年中国软质胶手环行业投资前景及策略咨询研究报告
- 2024至2030年中国高温齿轮油泵数据监测研究报告
- 2024至2030年中国风力提水机组数据监测研究报告
- 2024年熨平机项目成效分析报告
- 2024至2030年中国西装时尚肩型肩垫数据监测研究报告
- 2024年豪华电动车项目综合评估报告
- 2024至2030年中国脸谱烟缸数据监测研究报告
- 中国写意画竹子PowerPoint 演示文稿
- 初中音乐江苏民歌ppt课件
- 幕墙竣工验收自评报告7页
- 机动车维修企业安全生产标准化考评方法和考评实施细则(完整版)
- 外研版小学英语外研版(一起)五上Module 10《Unit 1 You should tidy your toys》ppt课件2
- 应急联防联动协议
- 财务会计职业生涯人物访谈报告
- (完整版)电渣压力焊施工施工工艺
- 二年级下册数学培优补差记录表
- 北京市甲级设计院
- 隧道盾构超限质量事故报告(完整版)
评论
0/150
提交评论