辽阳市重点中学2023-2024学年数学高一下期末质量跟踪监视试题含解析_第1页
辽阳市重点中学2023-2024学年数学高一下期末质量跟踪监视试题含解析_第2页
辽阳市重点中学2023-2024学年数学高一下期末质量跟踪监视试题含解析_第3页
辽阳市重点中学2023-2024学年数学高一下期末质量跟踪监视试题含解析_第4页
辽阳市重点中学2023-2024学年数学高一下期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽阳市重点中学2023-2024学年数学高一下期末质量跟踪监视试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=,|DE|=,则C的焦点到准线的距离为()A.2 B.4 C.6 D.82.已知直线l1:ax+2y+8=0与l2:x+(a-1)y+a2-1=0平行,则实数a的取值是()A.-1或2 B.-1 C.0或1 D.23.下列结论正确的是()A.若则; B.若,则C.若,则 D.若,则;4.的周期为()A. B. C. D.5.若,,,设,,且,则的值为()A.0 B.3 C.15 D.186.某校高一甲、乙两位同学的九科成绩如茎叶图所示,则下列说法正确的是()A.甲、乙两人的各科平均分不同 B.甲、乙两人的中位数相同C.甲各科成绩比乙各科成绩稳定 D.甲的众数是83,乙的众数为877.某市电视台为调查节目收视率,想从全市3个县按人口数用分层抽样的方法抽取一个容量为的样本,已知3个县人口数之比为,如果人口最多的一个县抽出60人,那么这个样本的容量等于()A.96 B.120 C.180 D.2408.三角函数是刻画客观世界周期性变化规律的数学模型,单位圆定义法是任意角的三角函数常用的定义方法,是以角度(数学上最常用弧度制)为自变量,任意角的终边与单位圆交点坐标为因变量的函数.平面直角坐标系中的单位圆指的是平面直角坐标系上,以原点为圆心,半径为单位长度的圆.问题:已知角的终边与单位圆的交点为,则()A. B. C. D.9.某象棋俱乐部有队员5人,其中女队员2人,现随机选派2人参加一个象棋比赛,则选出的2人中恰有1人是女队员的概率为()A. B. C. D.10.已知是两条不同的直线,是三个不同的平面,则下列命题正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数的部分图象如图所示,则_______.12.函数的最小正周期为.13.函数在内的单调递增区间为____.14.当,时,执行完如图所示的一段程序后,______.15.如果奇函数f(x)在[3,7]上是增函数且最小值是5,那么f(x)在[-7,-3]上是_________.①减函数且最小值是-5;②减函数且最大值是-5;③增函数且最小值是-5;④增函数且最大值是-516.不等式的解集为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1分)设数列{an}是公比为正数的等比数列,a1=2,a3﹣a2=1.(1)求数列{an}的通项公式;(2)设数列{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn.18.已知直线,.(1)证明:直线过定点;(2)已知直线//,为坐标原点,为直线上的两个动点,,若的面积为,求.19.在中,角,,的对边分别为,,.且满足.(Ⅰ)求角;(Ⅱ)若的面积为,,求边.20.在中,角A,B,C所对的边分别为a,b,c,.(1)求角C;(2)若,,求的面积.21.如图,在四棱锥中,底面,底面为矩形,为的中点,且,,.(1)求证:平面;(2)若点为线段上一点,且,求四棱锥的体积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

如图,设抛物线方程为,交轴于点,则,即点纵坐标为,则点横坐标为,即,由勾股定理知,,即,解得,即的焦点到准线的距离为4,故选B.【点睛】2、A【解析】

【详解】,选A.【点睛】本题考查由两直线平行求参数.3、D【解析】

根据不等式的性质,结合选项,进行逐一判断即可.【详解】因,则当时,;当时,,故A错误;因,则或,故B错误;因,才有,条件不足,故C错误;因,则,则只能是,故D正确.故选:D.【点睛】本题考查不等式的基本性质,需要对不等式的性质非常熟练,属基础题.4、D【解析】

根据正弦型函数最小正周期的结论即可得到结果.【详解】函数的最小正周期故选:【点睛】本题考查正弦型函数周期的求解问题,关键是明确正弦型函数的最小正周期.5、B【解析】

首先分别求出向量,然后再用两向量平行的坐标表示,最后求值.【详解】,,当时,,解得.故选B.【点睛】本题考查了向量平行的坐标表示,属于基础题型.6、C【解析】

分别计算出甲、乙两位同学成绩的平均分、中位数、众数,由此确定正确选项.【详解】甲的平均分为,乙的平均分,两人平均分相同,故A选项错误.甲的中位数为,乙的中位数为,两人中位数不相同,故B选项错误.甲的众数是,乙的众数是,故D选项错误.所以正确的答案为C.由茎叶图可知,甲的数据比较集中,乙的数据比较分散,所以甲比较稳定.(因为方差运算量特别大,故不需要计算出方差.)故选:C【点睛】本小题主要考查根据茎叶图比较平均数、中位数、众数、方差,属于基础题.7、B【解析】

根据分层抽样的性质,直接列式求解即可.【详解】因为3个县人口数之比为,而人口最多的一个县抽出60人,则根据分层抽样的性质,有,故选:B.【点睛】本题考查分层抽样,解题关键是明确分层抽样是按比例进行抽样.8、A【解析】

先求出和的值,再根据诱导公式即可得解.【详解】因为角的终边与单位圆的交点为,所以,,则.故选:A.【点睛】本题考查任意角三角函数值的求法,考查诱导公式的应用,属于基础题,9、B【解析】

直接利用概率公式计算得到答案.【详解】故选:【点睛】本题考查了概率的计算,属于简单题.10、D【解析】

根据空间线、面的位置关系有关定理,对四个选项逐一分析排除,由此得出正确选项.【详解】对于A选项,直线有可能在平面内,故A选项错误.对于B选项,两个平面有可能相交,平行于它们的交线,故B选项错误.对于C选项,可能平行,故C选项错误.根据线面垂直的性质定理可知D选项正确.故选D.【点睛】本小题主要考查空间线、面位置关系的判断,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由图可得,即可求得:,再由图可得:当时,取得最大值,即可列方程,整理得:,解得:(),结合即可得解.【详解】由图可得:,所以,解得:由图可得:当时,取得最大值,即:整理得:,所以()又,所以【点睛】本题主要考查了三角函数图象的性质及观察能力,还考查了转化思想及计算能力,属于中档题.12、【解析】试题分析:,所以函数的周期等于考点:1.二倍角降幂公式;2.三角函数的周期.13、【解析】

将函数进行化简为,求出其单调增区间再结合,可得结论.【详解】解:,递增区间为:,可得,在范围内单调递增区间为。故答案为:.【点睛】本题考查了正弦函数的单调区间,属于基础题。14、1【解析】

模拟程序运行,可得出结论.【详解】时,满足,所以.故答案为:1.【点睛】本题考查程序框图,考查条件结构,解题时模拟程序运行即可.15、④【解析】

由题意结合奇函数的对称性和所给函数的性质即可求得最终结果.【详解】奇函数的函数图象关于坐标原点中心对称,则若奇函数f(x)在区间[3,7]上是增函数且最小值为1,那么f(x)在区间[﹣7,﹣3]上是增函数且最大值为﹣1.故答案为:④.【点睛】本题考查了奇函数的性质,函数的对称性及其应用等,重点考查学生对基础概念的理解和计算能力,属于中等题.16、【解析】

根据一元二次不等式的解法直接求解可得结果.【详解】由得:即不等式的解集为故答案为:【点睛】本题考查一元二次不等式的求解问题,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)an=2×【解析】试题分析:(1)设出等比数列{an}的公比q,利用条件a1=4,a3﹣a4(4)数列{an+bn}是由一个等差数列和一个等比数列对应项相加得来的,所以可以采用拆项分组的方法,转化为等差数列、等比数列的前n项和问题来解决.试题解析:解:(1)设数列{an}的公比为q,由a1=4,a3﹣a4=1,得:4q4﹣4q﹣1=4,即q4﹣q﹣6=4.解得q=3或q=﹣4,∵q>4,∴q=﹣4不合题意,舍去,故q=3.∴an=4×3n﹣1;(4)∵数列{bn}是首项b1=1,公差d=4的等差数列,∴bn=4n﹣1,∴Sn=(a1+a4++an)+(b1+b4++bn)=+=3n﹣1+n4.考点:等差数列与等比数列.18、(1)见详解;(2)【解析】

(1)将直线变形,然后令前系数为0,可得结果.(2)根据直线//,可得,然后计算点到直线距离,根据面积公式,可得结果.【详解】(1)由则直线,令且所以对任意的,直线必过定点(2)由直线//,所以可知直线,则直线,点到直线距离为又,所以【点睛】本题主要考查直线过定点问题以及平面中线线平行关系,属基础题.19、(Ⅰ);(Ⅱ)【解析】

(Ⅰ)由正弦定理,两角和的正弦函数公式,同角三角函数基本关系式化简已知等式可得,结合范围,可得.(Ⅱ)由已知利用三角形的面积公式可得:,进而根据余弦定理可得的值.【详解】(Ⅰ)由得:∴∴又∴,即.又,∴(Ⅱ)∵的面积为,∴∴又,∴,即【点睛】本题主要考查了正弦定理,两角和的正弦函数公式,同角三角函数基本关系式,三角形的面积公式,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想.20、(1);(2)【解析】

(1)利用正弦定理进行边化角,然后得到的值,从而得到;(2)根据余弦定理,得到关于的方程,从而得到,再根据面积公式,得到答案.【详解】(1)在中,根据正弦定理,由,可得,所以,因为为内角,所以,所以因为为内角,所以,(2)在中,,,由余弦定理得解得,所以.【点睛】本题考查正弦定理、余弦定理解三角形,三角形面积公式,属于简单题.21、(1)见解析(2)6【解析】

(1)连接交于点,得出点为的中点,利用中位线的性质得出,再利用直线与平面平行的判定定理可得出平面;(2)过作交于,由平面,得出平面,可而出,结合,可证明出平面,可得出,并计算出,利用平行线的性质求出的长,再利用锥体的体积公式可计算出四棱锥的体积.【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论