浙江省江北区七校联考中考数学押题卷及答案解析_第1页
浙江省江北区七校联考中考数学押题卷及答案解析_第2页
浙江省江北区七校联考中考数学押题卷及答案解析_第3页
浙江省江北区七校联考中考数学押题卷及答案解析_第4页
浙江省江北区七校联考中考数学押题卷及答案解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省江北区七校联考中考数学押题卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1.反比例函数y=(a>0,a为常数)和y=在第一象限内的图象如图所示,点M在y=的图象上,MC⊥x轴于点C,交y=的图象于点A;MD⊥y轴于点D,交y=的图象于点B,当点M在y=的图象上运动时,以下结论:①S△ODB=S△OCA;②四边形OAMB的面积不变;③当点A是MC的中点时,则点B是MD的中点.其中正确结论的个数是()A.0 B.1 C.2 D.32.已知xa=2,xb=3,则x3a﹣2b等于()A. B.﹣1 C.17 D.723.已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有30个,黑球有n个.随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出的黑球的频率稳定在0.4附近,则n的值约为()A.20 B.30 C.40 D.504.平面直角坐标系内一点关于原点对称点的坐标是()A. B. C. D.5.下列计算错误的是()A.4x3•2x2=8x5B.a4﹣a3=aC.(﹣x2)5=﹣x10D.(a﹣b)2=a2﹣2ab+b26.sin60°的值为()A. B. C. D.7.化简的结果是()A.1 B. C. D.8.已知抛物线y=ax2+bx+c(a<0)与x轴交于点A(﹣1,0),与y轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n),则下列结论:①4a+2b<0;②﹣1≤a≤;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为()A.1个 B.2个 C.3个 D.4个9.如图,在ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,DE:EC=2:3,则S△DEF:S△ABF=()A.2:3 B.4:9 C.2:5 D.4:2510.如图,AB∥CD,点E在CA的延长线上.若∠BAE=40°,则∠ACD的大小为()A.150° B.140° C.130° D.120°二、填空题(本大题共6个小题,每小题3分,共18分)11.阅读材料:如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.设CD=x,若AB=4,DE=2,BD=8,则可用含x的代数式表示AC+CE的长为.然后利用几何知识可知:当A、C、E在一条直线上时,x=时,AC+CE的最小值为1.根据以上阅读材料,可构图求出代数式的最小值为_____.12.若式子有意义,则实数x的取值范围是_______.13.有两个一元二次方程:M:ax2+bx+c=0,N:cx2+bx+a=0,其中a+c=0,以下列四个结论中正确的是_____(填写序号).①如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根;②如果方程M有两根符号相同,那么方程N的两根符号也相同;③如果方程M和方程N有一个相同的根,那么这个根必是x=1;④如果5是方程M的一个根,那么是方程N的一个根.14.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=3cm,则EF=________cm.15.已知一组数据1,2,x,2,3,3,5,7的众数是2,则这组数据的中位数是.16.因式分解:a2b-4ab+4b=______.三、解答题(共8题,共72分)17.(8分)先化简代数式,再从范围内选取一个合适的整数作为的值代入求值。18.(8分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:x/元…152025…y/件…252015…已知日销售量y是销售价x的一次函数.求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;当每件产品的销售价定为35元时,此时每日的销售利润是多少元?19.(8分)计算:﹣22+2cos60°+(π﹣3.14)0+(﹣1)201820.(8分)将二次函数的解析式化为的形式,并指出该函数图象的开口方向、顶点坐标和对称轴.21.(8分)有一水果店,从批发市场按4元/千克的价格购进10吨苹果,为了保鲜放在冷藏室里,但每天仍有一些苹果变质,平均每天有50千克变质丢弃,且每存放一天需要各种费用300元,据预测,每天每千克价格上涨0.1元.设x天后每千克苹果的价格为p元,写出p与x的函数关系式;若存放x天后将苹果一次性售出,设销售总金额为y元,求出y与x的函数关系式;该水果店将这批水果存放多少天后一次性售出,可以获得最大利润,最大利润为多少?22.(10分)如图所示,平行四边形形ABCD中,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)请添加一个条件使四边形BEDF为菱形.23.(12分)如图,△ABC,△CDE均是等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上,求证:△CDA≌△CEB.24.如图,一次函数y=kx+b与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求一次函数y=kx+b和y=的表达式;(2)已知点C在x轴上,且△ABC的面积是8,求此时点C的坐标;(3)反比例函数y=(1≤x≤4)的图象记为曲线C1,将C1向右平移3个单位长度,得曲线C2,则C1平移至C2处所扫过的面积是_________.(直接写出答案)

参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】

根据反比例函数的性质和比例系数的几何意义逐项分析可得出解.【详解】①由于A、B在同一反比例函数y=图象上,由反比例系数的几何意义可得S△ODB=S△OCA=1,正确;②由于矩形OCMD、△ODB、△OCA为定值,则四边形MAOB的面积不会发生变化,正确;③连接OM,点A是MC的中点,则S△ODM=S△OCM=,因S△ODB=S△OCA=1,所以△OBD和△OBM面积相等,点B一定是MD的中点.正确;故答案选D.考点:反比例系数的几何意义.2、A【解析】∵xa=2,xb=3,∴x3a−2b=(xa)3÷(xb)2=8÷9=,故选A.3、A【解析】分析:根据白球的频率稳定在0.4附近得到白球的概率约为0.4,根据白球个数确定出总个数,进而确定出黑球个数n.详解:根据题意得:,

计算得出:n=20,

故选A.

点睛:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.4、D【解析】

根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数”解答.【详解】解:根据关于原点对称的点的坐标的特点,∴点A(-2,3)关于原点对称的点的坐标是(2,-3),故选D.【点睛】本题主要考查点关于原点对称的特征,解决本题的关键是要熟练掌握点关于原点对称的特征.5、B【解析】

根据单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;幂的乘方法则:底数不变,指数相乘;完全平方公式:(a±b)1=a1±1ab+b1.可巧记为:“首平方,末平方,首末两倍中间放”可得答案.【详解】A选项:4x3•1x1=8x5,故原题计算正确;

B选项:a4和a3不是同类项,不能合并,故原题计算错误;

C选项:(-x1)5=-x10,故原题计算正确;

D选项:(a-b)1=a1-1ab+b1,故原题计算正确;

故选:B.【点睛】考查了整式的乘法,关键是掌握整式的乘法各计算法则.6、B【解析】解:sin60°=.故选B.7、A【解析】原式=•(x–1)2+=+==1,故选A.8、C【解析】

①由抛物线的顶点横坐标可得出b=-2a,进而可得出4a+2b=0,结论①错误;

②利用一次函数图象上点的坐标特征结合b=-2a可得出a=-,再结合抛物线与y轴交点的位置即可得出-1≤a≤-,结论②正确;

③由抛物线的顶点坐标及a<0,可得出n=a+b+c,且n≥ax2+bx+c,进而可得出对于任意实数m,a+b≥am2+bm总成立,结论③正确;

④由抛物线的顶点坐标可得出抛物线y=ax2+bx+c与直线y=n只有一个交点,将直线下移可得出抛物线y=ax2+bx+c与直线y=n-1有两个交点,进而可得出关于x的方程ax2+bx+c=n-1有两个不相等的实数根,结合④正确.【详解】:①∵抛物线y=ax2+bx+c的顶点坐标为(1,n),

∴-=1,

∴b=-2a,

∴4a+2b=0,结论①错误;

②∵抛物线y=ax2+bx+c与x轴交于点A(-1,0),

∴a-b+c=3a+c=0,

∴a=-.

又∵抛物线y=ax2+bx+c与y轴的交点在(0,2),(0,3)之间(包含端点),

∴2≤c≤3,

∴-1≤a≤-,结论②正确;

③∵a<0,顶点坐标为(1,n),

∴n=a+b+c,且n≥ax2+bx+c,

∴对于任意实数m,a+b≥am2+bm总成立,结论③正确;

④∵抛物线y=ax2+bx+c的顶点坐标为(1,n),

∴抛物线y=ax2+bx+c与直线y=n只有一个交点,

又∵a<0,

∴抛物线开口向下,

∴抛物线y=ax2+bx+c与直线y=n-1有两个交点,

∴关于x的方程ax2+bx+c=n-1有两个不相等的实数根,结合④正确.

故选C.【点睛】本题考查了二次函数图象与系数的关系、抛物线与x轴的交点以及二次函数的性质,观察函数图象,逐一分析四个结论的正误是解题的关键.9、D【解析】试题分析:先根据平行四边形的性质及相似三角形的判定定理得出△DEF∽△BAF,从而DE:AB=DE:DC=2:5,所以S△DEF:S△ABF=4:25试题解析:∵四边形ABCD是平行四边形,∴AB∥CD,BA=DC∴∠EAB=∠DEF,∠AFB=∠DFE,∴△DEF∽△BAF,∴DE:AB=DE:DC=2:5,∴S△DEF:S△ABF=4:25,考点:1.相似三角形的判定与性质;2.三角形的面积;3.平行四边形的性质.10、B【解析】试题分析:如图,延长DC到F,则∵AB∥CD,∠BAE=40°,∴∠ECF=∠BAE=40°.∴∠ACD=180°-∠ECF=140°.故选B.考点:1.平行线的性质;2.平角性质.二、填空题(本大题共6个小题,每小题3分,共18分)11、4【解析】

根据已知图象,重新构造直角三角形,利用三角形相似得出CD的长,进而利用勾股定理得出最短路径问题.【详解】如图所示:C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.设CD=x,若AB=5,DE=3,BD=12,当A,C,E,在一条直线上,AE最短,∵AB⊥BD,ED⊥BD,∴AB∥DE,∴△ABC∽EDC,∴,∴,解得:DC=.即当x=时,代数式有最小值,此时为:.故答案是:4.【点睛】考查最短路线问题,利用了数形结合的思想,可通过构造直角三角形,利用勾股定理求解.12、x≤2且x≠1【解析】

根据被开方数大于等于1,分母不等于1列式计算即可得解.【详解】解:由题意得,且x≠1,解得且x≠1.故答案为且x≠1.【点睛】本题考查的知识点为:分式有意义,分母不为1;二次根式的被开方数是非负数.13、①②④【解析】试题解析:①在方程ax2+bx+c=0中△=b2-4ac,在方程cx2+bx+a=0中△=b2-4ac,

∴如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根,正确;

②∵和符号相同,和符号也相同,

∴如果方程M有两根符号相同,那么方程N的两根符号也相同,正确;

③、M-N得:(a-c)x2+c-a=0,即(a-c)x2=a-c,

∵a≠c,

∴x2=1,解得:x=±1,错误;④∵5是方程M的一个根,

∴25a+5b+c=0,

∴a+b+c=0,

∴是方程N的一个根,正确.

故正确的是①②④.14、3【解析】试题分析:根据点D为AB的中点可得:CD为直角三角形斜边上的中线,根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD=6,根据E、F分别为中点可得:EF为△ABC的中位线,根据中位线的性质可得:EF=AB=3.考点:(1)、直角三角形的性质;(2)、中位线的性质15、2.1【解析】试题分析:∵数据1,2,x,2,3,3,1,7的众数是2,∴x=2,∴这组数据的中位数是(2+3)÷2=2.1;故答案为2.1.考点:1、众数;2、中位数16、【解析】

先提公因式b,然后再运用完全平方公式进行分解即可.【详解】a2b﹣4ab+4b=b(a2﹣4a+4)=b(a﹣2)2,故答案为b(a﹣2)2.【点睛】本题考查了利用提公因式法与公式法分解因式,熟练掌握完全平方公式的结构特征是解本题的关键.三、解答题(共8题,共72分)17、-2【解析】

先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x的值代入计算可得.【详解】原式===,∵x≠±1且x≠0,∴在-1≤x≤2中符合条件的x的值为x=2,则原式=-=-2.【点睛】此题考查分式的化简求值,解题关键在于掌握运算法则.18、();()此时每天利润为元.【解析】试题分析:(1)根据题意用待定系数法即可得解;(2)把x=35代入(1)中的解析式,得到销量,然后再乘以每件的利润即可得.试题解析:()设,将,和,代入,得:,解得:,∴;()将代入()中函数表达式得:,∴利润(元),答:此时每天利润为元.19、-1【解析】

原式利用乘方的意义,特殊角的三角函数值,零指数幂法则计算即可求出值.【详解】解:原式=﹣4+1+1+1=﹣1.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20、开口方向:向上;点坐标:(-1,-3);称轴:直线.【解析】

将二次函数一般式化为顶点式,再根据a的值即可确定该函数图像的开口方向、顶点坐标和对称轴.【详解】解:,,,∴开口方向:向上,顶点坐标:(-1,-3),对称轴:直线.【点睛】熟练掌握将一般式化为顶点式是解题关键.21、;(3)该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元.【解析】

(1)根据按每千克元的市场价收购了这种苹果千克,此后每天每千克苹果价格会上涨元,进而得出天后每千克苹果的价格为元与的函数关系;(2)根据每千克售价乘以销量等于销售总金额,求出即可;(3)利用总售价-成本-费用=利润,进而求出即可.【详解】根据题意知,;.当时,最大利润12500元,答:该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元.【点睛】此题主要考查了二次函数的应用以及二次函数最值求法,得出与的函数关系是解题关键.22、见解析【解析】

(1)根据平行四边形的性质可得AB∥DC,OB=OD,由平行线的性质可得∠OBE=∠ODF,利用ASA判定△BOE≌△DOF,由全等三角形的性质可得EO=FO,根据对角线互相平分的四边形是平行四边形即可判定四边形BEDF是平行四边形;(2)添加EF⊥BD(本题添加的条件不唯一),根据对角线互相垂直的平行四边形为菱形即可判定平行四边形BEDF为菱形.【详解】(1)∵四边形ABCD是平行四边形,O是BD的中点,∴AB∥DC,OB=OD,∴∠OBE=∠ODF,又∵∠BOE=∠DOF,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)EF⊥BD.∵四边形BEDF是平行四边形,∵EF⊥BD,∴平行四边形BEDF是菱形.【点睛】本题考查了平行四边形的性质与判定、菱形的判定,熟知平行四边形的性质与判定及菱形的判定方法是解决问题的关键.23、见解析.【解析】试题分析:根据等腰直角三角形的性质得出CE=CD,BC=AC,再利用全等三角形的判定证明即可.试题解析:证明:∵△ABC、△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,∴CE=CD,BC=AC,∴∠ACB﹣∠ACE=∠DCE﹣∠ACE,∴∠ECB=∠DCA,在△CDA与△CEB中,BC=AC∠ECB=∠DAC∴△CDA≌△CEB.考点:全等三角形的判定;等腰直角三角形.24、(1),;(2)点C的坐标为或;(3)2.【解析】试题分析:(1)由点A的坐标利用反比例函数图象上点的坐标特征即可求出a值,从而得出反比例函数解析式;由勾股定理得出OA的长度从而得出点B的坐标,由点A、B的坐标利用待定系数法即可求出直线AB的解析式;

(2)设点C的坐标为(m,0),令直线AB与x轴的交点为D,根据三角形的面积公式结合△ABC的面积是8,可得出关于m的含绝对值符号的一元一次方程,解方程即可得出m值,从而得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论