版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年黑龙江省哈尔滨市呼兰一中、阿城二中、宾县三中、尚志五中四校数学高一下期末调研模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设满足约束条件,则的最小值为()A.3 B.4 C.5 D.102.在空间直角坐标系中,点关于平面对称的点的坐标为()A. B. C. D.3.在中,内角所对的边分别是,若,则角的值为()A. B. C. D.4.如图,平行四边形的对角线相交于点,是的中点,的延长线与相交于点,若,,,则()A. B. C. D.5.直线与圆相交于M,N两点,若.则的取值范围是()A. B. C. D.6.已知数列2008,2009,1,-2008,-2009…这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2019项之和S2019A.1 B.2010 C.4018 D.40177.在边长为1的等边三角形ABC中,D是AB的中点,E为线段AC上一动点,则的取值范围为()A. B. C. D.8.已知数列,其前n项和为,且,则的值是()A.4 B.8 C.2 D.99.不等式的解集为,则的值为(
)A. B.C. D.10.等差数列中,,则的值为()A.14 B.17 C.19 D.21二、填空题:本大题共6小题,每小题5分,共30分。11.设,则函数是__________函数(奇偶性).12.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马.现从双方的马匹中随机选一匹进行一场比赛,则田忌的马获胜的概率为__________.13.若正实数满足,则的最大值为__________.14.直线x-315.已知一组数据、、、、、,那么这组数据的平均数为__________.16.________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆的圆心在轴的正半轴上,半径为2,且被直线截得的弦长为.(1)求圆的方程;(2)设是直线上的动点,过点作圆的切线,切点为,证明:经过,,三点的圆必过定点,并求出所有定点的坐标.18.解下列方程(1);(2);19.要测量底部不能到达的电视塔AB的高度,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD="40"m,则电视塔的高度为多少?20.已知.(1)求;(2)求的值.21.近年来,我国自主研发的长征系列火箭的频频发射成功,标志着我国在该领域已逐步达到世界一流水平.火箭推进剂的质量为,去除推进剂后的火箭有效载荷质量为,火箭的飞行速度为,初始速度为,已知其关系式为齐奥尔科夫斯基公式:,其中是火箭发动机喷流相对火箭的速度,假设,,,是以为底的自然对数,,.(1)如果希望火箭飞行速度分别达到第一宇宙速度、第二宇宙速度、第三宇宙速度时,求的值(精确到小数点后面1位).(2)如果希望达到,但火箭起飞质量最大值为,请问的最小值为多少(精确到小数点后面1位)?由此指出其实际意义.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
结合题意画出可行域,然后运用线性规划知识来求解【详解】如图由题意得到可行域,改写目标函数得,当取到点时得到最小值,即故选【点睛】本题考查了运用线性规划求解最值问题,一般步骤:画出可行域,改写目标函数,求出最值,需要掌握解题方法2、C【解析】
纵竖坐标不变,横坐标变为相反数.【详解】点关于平面对称的点的坐标为.故选C.【点睛】本题考查空间直角坐标系,属于基础题.3、C【解析】
利用正弦定理,求得,再利用余弦定理,求得,即可求解.【详解】在,因为,由正弦定理可化简得,即,由余弦定理得,因为,所以,故选C.【点睛】本题主要考查了正弦定理、余弦定理的应用,其中在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理,着重考查了运算与求解能力,属于基础题.4、B【解析】
先根据勾股定理判断为直角三角形,且,,再根据三角形相似可得,然后由向量的加减的几何意义以及向量的数量积公式计算即可.【详解】,,,,为直角三角形,且,,平行行四边形的对角线相交于点,是的中点,,,,,故选B.【点睛】本题主要考查向量的加减的几何意义以及向量的数量积公式的应用.5、A【解析】
可通过将弦长转化为弦心距问题,结合点到直线距离公式和勾股定理进行求解【详解】如图所示,设弦中点为D,圆心C(3,2),弦心距,又,由勾股定理可得,答案选A【点睛】圆与直线的位置关系解题思路常从两点入手:弦心距、勾股定理。处理过程中,直线需化成一般式6、C【解析】
计算数列的前几项,观察数列是一个周期为6的数列,计算得到答案.【详解】从第二项起,每一项都等于它的前后两项之和计算数列前几项得:2008,2009,1,-2008,-2009,-1,2008,2009,1,-2008…观察知:数列是一个周期为6的数列每个周期和为0S故答案为C【点睛】本题考查了数列的前N项和,观察数列的周期是解题的关键.7、B【解析】
由题意,以点为坐标原点,方向为轴正方向,方向为轴正方向,建立平面直角坐标系,得到,,以及直线的方程,设出点E坐标,根据向量数量积,直接计算,即可得出结果.【详解】如图,以点为坐标原点,方向为轴正方向,方向为轴正方向,建立平面直角坐标系,因为等边三角形的边长为1,所以,,,,则直线的方程为,整理得,因为E为线段AC上一动点,设,,则,,所以,因为,所以在上单调递减,在上单调递增,所以的最小值为,最大值为.即的取值范围为.故选B【点睛】本题主要考查平面向量的数量积,利用建立坐标系的方法求解即可,属于常考题型.8、A【解析】
根据求解.【详解】由题得.故选:A【点睛】本题主要考查数列和的关系,意在考查学生对这些知识的理解掌握水平,属于基础题.9、B【解析】
根据一元二次不等式解集与对应一元二次方程根的关系列方程组,解得a,c的值.【详解】由题意得为方程两根,所以,选B.【点睛】一元二次方程的根与对应一元二次不等式解集以及对应二次函数零点的关系,是数形结合思想,等价转化思想的具体体现,注意转化时的等价性.10、B【解析】
利用等差数列的性质,.【详解】,解得:.故选B.【点睛】本题考查了等比数列的性质,属于基础题型.二、填空题:本大题共6小题,每小题5分,共30分。11、偶【解析】
利用诱导公式将函数的解析式进行化简,即可判断出函数的奇偶性.【详解】,因此,函数为偶函数.故答案为:偶.【点睛】本题考查三角函数奇偶性的判断,解题的关键就是利用诱导公式对三角函数解析式进行化简,考查分析问题和解决问题的能力,属于基础题.12、.【解析】分析:由题意结合古典概型计算公式即可求得题中的概率值.详解:由题意可知了,比赛可能的方法有种,其中田忌可获胜的比赛方法有三种:田忌的中等马对齐王的下等马,田忌的上等马对齐王的下等马,田忌的上等马对齐王的中等马,结合古典概型公式可得,田忌的马获胜的概率为.点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.13、【解析】
可利用基本不等式求的最大值.【详解】因为都是正数,由基本不等式有,所以即,当且仅当时等号成立,故的最大值为.【点睛】应用基本不等式求最值时,需遵循“一正二定三相等”,如果原代数式中没有积为定值或和为定值,则需要对给定的代数变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.14、π【解析】
将直线方程化为斜截式,利用直线斜率与倾斜角的关系求解即可.【详解】因为x-3所以y=33x-33则tanα=33,α=【点睛】本题主要考查直线的斜率与倾斜角的关系,意在考查对基础知识的掌握情况,属于基础题.15、【解析】
利用平均数公式可求得结果.【详解】由题意可知,数据、、、、、的平均数为.故答案为:.【点睛】本题考查平均数的计算,考查平均数公式的应用,考查计算能力,属于基础题.16、【解析】
直接利用两角和与差的余弦函数公式及特殊角的三角函数值化简,即可得到结果.【详解】.故答案为:.【点睛】本题考查两角和与差的余弦函数公式,以及特殊角的三角函数值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)圆:.(2)证明见解析;,.【解析】
(1)设出圆心坐标,利用点到直线距离公式以及圆的弦长列方程,解方程求得圆心坐标,进而求得圆的方程.(2)设出点坐标,根据过圆的切线的几何性质,得到过,,三点的圆是以为直径的圆.设出圆上任意一点的坐标,利用,结合向量数量积的坐标运算进行化简,得到该圆对应的方程,根据方程过的定点与无关列方程组,解方程组求得该圆所过定点.【详解】解:(1)设圆心,则圆心到直线的距离.因为圆被直线截得的弦长为∴.解得或(舍),∴圆:.(2)已知,设,∵为切线,∴,∴过,,三点的圆是以为直径的圆.设圆上任一点为,则.∵,,∴即.若过定点,即定点与无关令解得或,所以定点为,.【点睛】本小题主要考查圆的几何性质,考查圆的弦长有关计算,考查曲线过定点问题的求解策略,考查向量数量积的坐标运算,属于中档题.18、(1)或;(2);【解析】
(1)由,得,解方程即可.(2)由已知得到,解得即可.【详解】(1),,或,或.(2),,解得.【点睛】本题考查了指数型、对数型方程,考查了指数、对数的运算,属于基础题.19、40m.【解析】试题分析:本题是解三角形的实际应用题,根据题意分析出图中的数据,即∠ADB=30°,∠ACB=45°,所以,可以得出在Rt△ABD中,BD=AB,在Rt△ABC中,∴BC=AB.在△BCD中,由余弦定理,得BD2=BC2+CD2-2BC·CDcos∠BCD,代入数据,运算即可得出结果.试题解析:根据题意得,在Rt△ABD中,∠ADB=30°,∴BD=AB,在Rt△ABC中,∠ACB=45°,∴BC=AB.在△BCD中,由余弦定理,得BD2=BC2+CD2-2BC·CDcos∠BCD,∴3AB2=AB2+CD2-2AB·CDcos120°整理得AB2-20AB-800=0,解得,AB=40或AB=-20(舍).即电视塔的高度为40m考点:解三角形.20、(1)(2)【解析】
(1)根据三角函数的基本关系式,可得,再结合正切的倍角公式,即可求解;(2)由(1)知,结合三角函数的基本关系式,即可求解,得到答案.【详解】(1)由,根据三角函数的基本关系式,可得,所以.(2)由(1)知,又由.【点睛】本题主要考查了三角函数的基本关系式和正切的倍角公式的化简求值,其中解答中熟记三角函数的基本关系式和三角恒等变换的公式,准确运算是解答的关键,着重考查了推理与计算能力,属于基础题.21、(1)(2)见解析【解析】
(1)弄清题意,将相关数据代入齐奥尔科夫斯基公式:,即可得出各个等级的速度对应的的值;(2)弄清题意与相关名词,火箭起飞质量即为,将公式变形,分离出,解不等式即可得,的最小值为.【详解】(1)由题意可得,,,且
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新零售环境下物流配送优化方案
- 《大学英语翻转课堂实践共同体中教师TPACK发展研究》
- 古元古代-中国重要的成矿期
- 分式的乘除法运算法则
- 2024年版商务咨询合同范本
- 风险预警与应对管理策略
- 航空业航空物流与货运代理服务方案
- DB3305T 273-2023 现代小微企业基本要求
- DB3305T 234-2022 金黄茧家蚕饲育规程
- 体育赛事策划组织合同
- 商场反恐防暴应急预案演练方案
- 成华区九年级上学期语文期末试卷
- 智慧物业管理的区块链技术应用
- 2024年中考英语语法感叹句100题精练
- 《海洋与人类》导学案
- 公安管理学试题(含答案)
- 挑战杯红色赛道计划书
- 重整投资保密承诺函(范本)
- 先天性甲状腺功能减低症专家讲座
- 淮安市洪泽区2022-2023学年七年级上学期期末生物试题【带答案】
- 2024年民航安全知识培训考试题库及答案(核心题)
评论
0/150
提交评论