浙江省各地2023-2024学年数学高一下期末学业质量监测模拟试题含解析_第1页
浙江省各地2023-2024学年数学高一下期末学业质量监测模拟试题含解析_第2页
浙江省各地2023-2024学年数学高一下期末学业质量监测模拟试题含解析_第3页
浙江省各地2023-2024学年数学高一下期末学业质量监测模拟试题含解析_第4页
浙江省各地2023-2024学年数学高一下期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省各地2023-2024学年数学高一下期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设且,的最小值为()A.10 B.9 C.8 D.2.甲、乙、丙三人随意坐下,乙不坐中间的概率为()A. B. C. D.3.已知点是所在平面内的一定点,是平面内一动点,若,则点的轨迹一定经过的()A.重心 B.垂心 C.内心 D.外心4.掷两颗均匀的骰子,则点数之和为5的概率等于()A. B. C. D.5.已知向量,且,则m=()A.−8 B.−6C.6 D.86.已知数列满足,,则数列的前5项和()A.15 B.28 C.45 D.667.某市家庭煤气的使用量和煤气费(元)满足关系,已知某家庭今年前三个月的煤气费如下表:月份用气量煤气费一月份元二月份元三月份元若四月份该家庭使用了的煤气,则其煤气费为()元A. B. C. D.8.函数,,若在区间上是单调函数,,则的值为()A. B.2 C.或 D.或29.若直线与直线互相平行,则的值等于()A.0或或3 B.0或3 C.0或 D.或310.中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的,,依次输入的为2,2,5,则输出的()A.7 B.12 C.17 D.34二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量,,且,则_______.12.已知,,若,则____13.已知三棱柱的侧棱与底面边长都相等,在底面内的射影为的中心,则与底面所成角的正弦值等于.14.已知为等差数列,为其前项和,若,则,则______.15.已知直线过点,且在两坐标轴上的截距相等,则此直线的方程为_____________.16.在中,角A,B,C所对的边分别为a,b,c,,的平分线交AC于点D,且,则的最小值为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设等差数列的前项和为,且(是常数,),.(1)求的值及数列的通项公式;(2)设,求数列的前项和为.18.如图,是以向量为边的平行四边形,又,试用表示.19.已知等比数列满足,,等差数列满足,,求数列的前项和.20.已知某公司生产某款手机的年固定成本为400万元,每生产1万部还需另投入160万元.设公司一年内共生产该款手机x(x≥40)万部且并全部销售完,每万部的收入为R(x)万元,且R(x)=74000(1)写出年利润W(万元)关于年产量x(万部)的函数关系式;(2)当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润.21.设函数f(x)=2cos2x﹣cos(2x﹣).(1)求f(x)的周期和最大值;(2)已知△ABC中,角A.B.C的对边分别为A,B,C,若f(π﹣A)=,b+c=2,求a的最小值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

由配凑出符合基本不等式的形式,利用基本不等式即可求得结果.【详解】(当且仅当,即时取等号)的最小值为故选:【点睛】本题考查利用基本不等式求解和的最小值的问题,关键是能够灵活利用“”,配凑出符合基本不等式的形式.2、A【解析】甲、乙、丙三人随意坐下有种结果,乙坐中间则有,乙不坐中间有种情况,概率为,故选A.点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.3、A【解析】

设D是BC的中点,由,,知,所以点P的轨迹是射线AD,故点P的轨迹一定经过△ABC的重心.【详解】如图,设D是BC的中点,∵,,∴,即∴点P的轨迹是射线AD,∵AD是△ABC中BC边上的中线,∴点P的轨迹一定经过△ABC的重心.故选:A.【点睛】本题考查三角形五心的应用,是基础题.解题时要认真审题,仔细解答.4、B【解析】

试题分析:掷两颗均匀的骰子,共有36种基本事件,点数之和为5的事件有(1,4),(2,3),(3,2),(4,1)这四种,因此所求概率为,选B.考点:概率问题5、D【解析】

由已知向量的坐标求出的坐标,再由向量垂直的坐标运算得答案.【详解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故选D.【点睛】本题考查平面向量的坐标运算,考查向量垂直的坐标运算,属于基础题.6、C【解析】

根据可知数列为等差数列,再根据等差数列的求和性质求解即可.【详解】因为,故数列是以4为公差,首项的等差数列.故.故选:C【点睛】本题主要考查了等差数列的判定与等差数列求和的性质与计算,属于基础题.7、C【解析】由题意得:C=4,将(25,14),(35,19)代入f(x)=4+B(x﹣A),得:∴A=5,B=,故x=20时:f(20)=4+(20﹣5)=11.5.故选:C.点睛:这是函数的实际应用题型,根据题目中的条件和已知点得到分段函数的未知量的值,首先得到函数表达式,再根据题意让求自变量为20时的函数值,求出即可。实际应用题型,一般是先根据题意构建模型,列出表达式,根据条件求解问题即可。8、D【解析】

先根据单调性得到的范围,然后根据得到的对称轴和对称中心,考虑对称轴和对称中心是否在同一周期内,分析得到的值.【详解】因为,则;又因为,则由可知得一条对称轴为,又因为在区间上是单调函数,则由可知的一个对称中心为;若与是同一周期内相邻的对称轴和对称中心,则,则,所以;若与不是同一周期内相邻的对称轴和对称中心,则,则,所以.【点睛】对称轴和对称中心的判断:对称轴:,则图象关于对称;对称中心:,则图象关于成中心对称.9、D【解析】

根据直线的平行关系,列方程解参数即可.【详解】由题:直线与直线互相平行,所以,,解得:或.经检验,当或时,两条直线均平行.故选:D【点睛】此题考查根据直线平行关系求解参数的取值,需要熟记公式,注意考虑直线重合的情况.10、C【解析】第一次循环:a=2,s=2,k=1;第二次循环:a=2,s=6,k=2;第三次循环:a=5,s=17,k=3>2;结束循环,输出s=17,选C.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.二、填空题:本大题共6小题,每小题5分,共30分。11、-2或3【解析】

用坐标表示向量,然后根据垂直关系得到坐标运算关系,求出结果.【详解】由题意得:或本题正确结果:或【点睛】本题考查向量垂直的坐标表示,属于基础题.12、【解析】

由,,得的坐标,根据得,由向量数量积的坐标表示即可得结果.【详解】∵,,∴又∵,∴,即,所以,解得,故答案为.【点睛】本题主要考查了向量的坐标运算,两向量垂直与数量积的关系,属于基础题.13、【解析】试题分析:由题意得,不妨设棱长为,如图,在底面内的射影为的中心,故,由勾股定理得,过作平面,则为与底面所成角,且,作于中点,所以,所以,所以与底面所成角的正弦值为.考点:直线与平面所成的角.14、【解析】

利用等差中项的性质求出的值,再利用等差中项的性质求出的值.【详解】由等差中项的性质可得,得,由等差中项的性质得,.故答案为:.【点睛】本题考查等差数列中项的计算,充分利用等差中项的性质进行计算是解题的关键,考查计算能力,属于基础题.15、或【解析】

分两种情况考虑,第一:当所求直线与两坐标轴的截距不为0时,设出该直线的方程为,把已知点坐标代入即可求出的值,得到直线的方程;第二:当所求直线与两坐标轴的截距为0时,设该直线的方程为,把已知点的坐标代入即可求出的值,得到直线的方程,综上,得到所有满足题意的直线的方程.【详解】解:①当所求的直线与两坐标轴的截距不为0时,设该直线的方程为,把代入所设的方程得:,则所求直线的方程为即;②当所求的直线与两坐标轴的截距为0时,设该直线的方程为,把代入所求的方程得:,则所求直线的方程为即.综上,所求直线的方程为:或.故答案为:或【点睛】此题考查学生会根据条件设出直线的截距式方程和点斜式方程,考查了分类讨论的数学思想,属于基础题.16、32【解析】

根据面积关系建立方程关系,结合基本不等式1的代换进行求解即可.【详解】如图所示,则△ABC的面积为,即ac=2a+2c,得,得,当且仅当,即3c=a时取等号;∴的最小值为32.故答案为:32.【点睛】本题考查三角形中的几何计算,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)先令得出,再令,利用作差法得出,于此得出,可由和的值求出等差数列的公差,于此可求出等差数列的通项公式;(2)先求出数列的通项公式,再利用错位相减法求出数列的前项和.【详解】(1)因为,所以当时,,解得.当时,,即.解得,所以,解得,则.数列的公差.所以;(2)因为,所以,①,②由①-②可得,所以.【点睛】本题考查等差数列通项的求解,考查错位相减法求和,解题时要注意错位相减求和法所适用数列通项的结构类型,要熟练错位相减法求和的基本步骤,难点在于计算量较大,属于中等题.18、,,【解析】试题分析:利用向量的加减法的几何意义得,再结合已知及图形得最后求出.试题解析:解:考点:向量的加减法的几何意义19、【解析】

由等比数列易得公比和,进而可得等差数列的首项和公差,代入求和公式计算可得.【详解】解:∵等比数列满足,,

∴公比,

∴等差数列中,

∴公差,

∴数列的前项和.【点睛】本题考查等差数列的求和公式,涉及等比数列的通项公式,求出数列的首项和公差是解决问题的关键,属基础题.20、(1)W=73600-400000x-160x,(x≥40);(2)当x=50【解析】

(1)根据题意,即可求解利润关于产量的关系式为W=(2)由(1)的关系式,利用基本不等式求得最大值,即可求解最大利润.【详解】(1)由题意,可得利润W关于年产量x的函数关系式为W=xRx=74000-400000x-160x-400=73600-2由1可得W=73600-=73600-16000=57600,当且仅当400000x=160,即x=50时取等号,所以当x=50时,【点睛】本题主要考查了函数的实际应用问题,以及利用基本不等式求最值,其中解答中认真审题,得出利润W关于年产量x的函数关系式,再利用基本不等式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.21、(1)周期为π,最大值为2.(2)【解析】

(1)利用倍角公式降幂,展开两角差的余弦,将函数的关系式化简余弦型函数,可求出函数的周期及最值;(2)由f(π﹣A),求解角A,再利用余弦定理和基本不等式求a的最小值.【详解】(1)函数f(x)=2cos2x﹣

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论