版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年九江市重点中学数学高一下期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在△ABC中,点D在线段BC的延长线上,且=3,点O在线段CD上(与点C,D不重合),若=x+(1-x),则x的取值范围是()A. B.C. D.2.有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为A. B. C. D.3.某学生用随机模拟的方法推算圆周率的近似值,在边长为的正方形内有一内切圆,向正方形内随机投入粒芝麻,(假定这些芝麻全部落入该正方形中)发现有粒芝麻落入圆内,则该学生得到圆周率的近似值为()A. B. C. D.4.已知函数的最小正周期为,将该函数的图象向左平移个单位后,得到的图象对应的函数为偶函数,则的图象()A.关于点对称 B.关于直线对称C.关于点对称 D.关于直线对称5.已知等差数列的前项和为,,当时,的值为()A.21 B.22 C.23 D.246.如图,在矩形中,,,点为的中点,点在边上,点在边上,且,则的最大值是()A. B. C. D.7.正方体中,则异面直线与所成的角是A.30° B.45° C.60° D.90°8.法国“业余数学家之王”皮埃尔·德·费马在1936年发现的定理:若x是一个不能被质数p整除的整数,则必能被p整除,后来人们称为费马小定理.按照该定理若在集合中任取两个数,其中一个作为x,另一个作为p,则所取的两个数符合费马小定理的概率为()A. B. C. D.9.已知m,n表示两条不同直线,表示平面,下列说法正确的是()A.若则 B.若,,则C.若,,则 D.若,,则10.设的内角所对边的长分别为,若,则角=()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.化简sin2α+sin2β-sin2αsin2β+cos2αcos2β=______.12.设,其中,则的值为________.13.已知x、y满足约束条件,则的最小值为________.14.若、为单位向量,且,则向量、的夹角为_______.(用反三角函数值表示)15.读程序,完成下列题目:程序如图:(1)若执行程序时,没有执行语句,则输入的的范围是_______;(2)若执行结果,输入的的值可能是___.16.已知数列的前项和为,则其通项公式__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知(1)化简;(2)若,求的值.18.正项数列:,满足:是公差为的等差数列,是公比为2的等比数列.(1)若,求数列的所有项的和;(2)若,求的最大值;(3)是否存在正整数,满足?若存在,求出的值;若不存在,请说明理由.19.某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在,,,,,(单位:克)中,经统计的频率分布直方图如图所示.(1)估计这组数据的平均数(同一组中的数据以这组数据所在区间中点的值作代表);(2)现按分层抽样从质量为[200,250),[250,300)的芒果中随机抽取5个,再从这5个中随机抽取2个,求这2个芒果都来自同一个质量区间的概率;(3)某经销商来收购芒果,同一组中的数据以这组数据所在区间中点的值作代表,用样本估计总体,该种植园中还未摘下的芒果大约还有10000个,经销商提出以下两种收购方案:方案①:所有芒果以9元/千克收购;方案②:对质量低于250克的芒果以2元/个收购,对质量高于或等于250克的芒果以3元/个收购.通过计算确定种植园选择哪种方案获利更多.参考数据:.20.已知函数f(x)=(1+)sin2x-2sin(x+)sin(x-).(1)若tanα=2,求f(α);(2)若x∈[,],求f(x)的取值范围21.已知,且为第二象限角.(Ⅰ)求的值;(Ⅱ)求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
根据所给的数量关系,写出要求向量的表示式,注意共线的向量之间的三分之一关系,根据表示的关系式和所给的关系式进行比较,得到结果.【详解】如图.依题意,设=λ,其中1<λ<,则有=+=+λ=+λ(-)=(1-λ)+λ.又=x+(1-x),且不共线,于是有x=1-λ∈,即x的取值范围是.故选D.【点睛】本题考查向量的基本定理,是一个基础题,这种题目可以出现在解答题目中,也可以单独出现,注意表示向量时,一般从向量的起点出发,绕着图形的边到终点.2、C【解析】选取两支彩笔的方法有种,含有红色彩笔的选法为种,由古典概型公式,满足题意的概率值为.本题选择C选项.考点:古典概型名师点睛:对于古典概型问题主要把握基本事件的种数和符合要求的事件种数,基本事件的种数要注意区别是排列问题还是组合问题,看抽取时是有、无顺序,本题从这5支彩笔中任取2支不同颜色的彩笔,是组合问题,当然简单问题建议采取列举法更直观一些.3、B【解析】
由落入圆内的芝麻数占落入正方形区域内的芝麻数的比例等于圆的面积与正方形的面积比相等,列等式求出的近似值.【详解】边长为的正方形内有一内切圆的半径为,圆的面积为,正方形的面积为,由几何概型的概率公式可得,得,因此,该学生得到圆周率的近似值为,故选:B.【点睛】本题考查利用随机模拟思想求圆周率的近似值,解题的关键就是利用概率相等结合几何概型的概率公式列等式求解,考查计算能力,属于基础题.4、A【解析】
由周期求出,按图象平移写出函数解析式,再由偶函数性质求出,然后根据正弦函数的性质判断.【详解】由题意,平移得函数式为,其为偶函数,∴,由于,∴.,,.∴是对称中心.故选:A.【点睛】本题考查求三角函数的解析式,考查三角函数的对称性的奇偶性.掌握三角函数图象变换是基础,掌握三角函数的性质是解题关键.5、B【解析】
由,得,按或分两种情况,讨论当时,求的值.【详解】已知等差数列的前项和为,由,得,当时,有,得,,∴时,此时.当时,有,得,,∴时,此时.故选:B【点睛】本题考查等差数列的求和公式及其性质的应用,也考查分类讨论的思想,属于基础题.6、A【解析】
把线段最值问题转化为函数问题,建立函数表达式,从而求得最值.【详解】设,,,,,,,,,,的最大值是.故选A.【点睛】本题主要考查函数的实际应用,建立合适的函数关系式是解决此题的关键,意在考查学生的分析能力及数学建模能力.7、C【解析】连接A,易知:平行A,∴异面直线与所成的角即异面直线与A所成的角,连接,易知△为等边三角形,
∴异面直线与所成的角是60°故选C8、A【解析】
用列举法结合古典概型概率公式计算即可得出答案.【详解】用表示抽取的两个数,其中第一个为,第二个为总的基本事件分别为:,,,共12种其中所取的两个数符合费马小定理的基本事件分别为:,,共8种则所取的两个数符合费马小定理的概率故选:A【点睛】本题主要考查了利用古典概型概率公式计算概率,属于基础题.9、B【解析】试题分析:线面垂直,则有该直线和平面内所有的直线都垂直,故B正确.考点:空间点线面位置关系.10、B【解析】
试题分析:,由正弦定理可得即;因为,所以,所以,而,所以,故选B.考点:1.正弦定理;2.余弦定理.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】原式=sin2α(1-sin2β)+sin2β+cos2αcos2β=sin2αcos2β+cos2αcos2β+sin2β=cos2β(sin2α+cos2α)+sin2β=1.12、【解析】
由两角差的正弦公式以及诱导公式,即可求出的值.【详解】,所以,因为,故.【点睛】本题主要考查两角差的正弦公式的逆用以及诱导公式的应用.13、-3【解析】
作出可行域,目标函数过点时,取得最小值.【详解】作出可行域如图表示:目标函数,化为,当过点时,取得最大值,则取得最小值,由,解得,即,的最小值为.故答案为:【点睛】本题考查二元一次不等式组表示平面区域,以及线性目标函数的最值,属于基础题.14、.【解析】
设向量、的夹角为,利用平面向量数量积的运算律与定义计算出的值,利用反三角函数可求出的值.【详解】设向量、的夹角为,由平面向量数量积的运算律与定义得,,,因此,向量、的夹角为,故答案为.【点睛】本题考查利用平面向量的数量积计算平面向量所成的夹角,解题的关键就是利用平面向量数量积的定义和运算律,考查运算求解能力,属于中等题.15、2【解析】
(1)不执行语句,说明不满足条件,,从而得;(2)执行程序,有当时,,只有,.【详解】(1)不执行语句,说明不满足条件,,故有.(2)当时,,只有,.故答案为:(1)(2);【点睛】本题主要考察程序语言,考查对简单程序语言的阅读理解,属于基础题.16、【解析】分析:先根据和项与通项关系得当时,,再检验,时,不满足上述式子,所以结果用分段函数表示.详解:∵已知数列的前项和,∴当时,,当时,,经检验,时,不满足上述式子,故数列的通项公式.点睛:给出与的递推关系求,常用思路是:一是利用转化为的递推关系,再求其通项公式;二是转化为的递推关系,先求出与之间的关系,再求.应用关系式时,一定要注意分两种情况,在求出结果后,看看这两种情况能否整合在一起.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)直接利用诱导公式化简求解即可;(2)由(1)可求出,然后利用同角三角函数的基本关系式将化成只含有的表达式,代入即可求解.【详解】(1)(2)因为,所以,由于将代入,得【点睛】本题主要考查诱导公式以及同角三角函数基本关系式的应用,意在考查学生的数学建模能力和运算能力.18、(1)84;(2)1033;(3)存在,【解析】
(1)由题意可得:,即为:2,4,6,8,10,12,14,16,8,4;可得的值;(2)由题意可得,故有;即,即必是2的整数幂,要最大,必需最大,,可得出的最大值;(3)由是公差为的等差数列,是公比为2的等比数列,可得与,可得k与m的方程,一一验算k的值可得答案.【详解】解:(1)由已知,故为:2,4,6,8,10,12,14,16;公比为2,则对应的数为2,4,8,16,从而即为:2,4,6,8,10,12,14,16,8,4;此时(2)是首项为2,公差为2的等差数列,故,从而,而首项为2,公比为2的等比数列且,故有;即,即必是2的整数幂又,要最大,必需最大,,故的最大值为,所以,即的最大值为1033(3)由数列是公差为的等差数列知,,而是公比为2的等比数列,则,故,即,又,,则,即,则,即显然,则,所以,将,代入验证知,当时,上式右端为8,等式成立,此时,综上可得:当且仅当时,存在满足等式【点睛】本题主要考查等差数列、等比数列的通项公式及等差数列、等比数列前n项的和,属于难题,注意灵活运用各公式解题与运算准确.19、(1)255;(2);(3)选择方案②获利多【解析】
1)由频率分布直方图能求出这组数据的平均数.(2)利用分层抽样从这两个范围内抽取5个芒果,则质量在[200,250)内的芒果有2个,记为a1,a2,质量在[250,300)内的芒果有3个,记为b1,b2,b3,从抽取的5个芒果中抽取2个,利用列举法能求出这2个芒果都来自同一个质量区间的概率.(3)方案①收入22950元,方案②:低于250克的芒果的收入为8400元,不低于250克的芒果的收入为17400元,由此能求出选择方案②获利多.【详解】(1)由频率分布直方图知,各区间频率为0.07,0.15,0.20,0.30,0.25,0.03这组数据的平均数.(2)利用分层抽样从这两个范围内抽取5个芒果,则质量在[200,250)内的芒果有2个,记为,,质量在[250,300)内的芒果有3个,记为,,;从抽取的5个芒果中抽取2个共有10种不同情况:,,,,,,,,,.记事件为“这2个芒果都来自同一个质量区间”,则有4种不同组合:,,,从而,故这2个芒果都来自同一个质量区间的概率为.(3)方案①收入:(元);方案②:低于250克的芒果收入为(元);不低于250克的芒果收入为(元);故方案②的收入为(元).由于,所以选择方案②获利多.【点睛】本题考查平均数、概率的求法,考查频率分布直方图、古典概型等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.20、(1);(2)[0,].【解析】
(1)f(x)=·sin2x-2(sinx+cosx)(sinx-cosx)=sin2x+cosxsinx-sin2x+cos2x=sinxcosx+cos2x,∴f(α)====.(2)由(1)知,f(x)=cos2x+sinxcosx=+=sin
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 圆周接力课件教学课件
- 2024乙丙双方关于智能家居系统安装与维护的合同
- 2024保险合同保险标的及属性规定
- 2024年司机配驾汽车租赁合同标准版
- 2024年度工程建设项目融资担保合同
- 2024年居住区绿化托管协议
- 2024年广告制作委托合同
- 2024年展览厅知识产权保护合同
- 2024国有土地使用权合同解释国有土地使用权收购合同
- 2024年度汽车销售业绩奖励合同
- 第6课《我们神圣的国土》 (教学设计)-部编版道德与法治五年级上册
- 模拟电子技术说课
- 2024年秋新精通版(三年级起)英语三年级上册课件 Unit 5 Lesson 1
- 2024年应急管理部所属事业单位第二次招聘考试笔试高频500题难、易错点模拟试题附带答案详解
- 2024版CSCO淋巴瘤诊疗指南解读
- 2024年陕西省中考英语试题及解析版
- GB/T 25356-2024机场道面除冰防冰液
- 18 《浏览数字博物馆》(教学设计) 五年级信息技术武汉版
- 期中测试卷(1-4单元)试题-2024-2025学年人教版数学六年级上册
- 建筑工程项目中的精益建造和可持续发展
- 大国三农II-农业科技版智慧树知到期末考试答案章节答案2024年中国农业大学
评论
0/150
提交评论