




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省上饶2024年高一数学第二学期期末综合测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,在中,,点在边上,且,则等于()A. B. C. D.2.若变量,满足条件,则的最大值是()A.-4 B.-2 C.0 D.23.设函数是定义为R的偶函数,且对任意的,都有且当时,,若在区间内关于的方程恰好有3个不同的实数根,则的取值范围是()A. B. C. D.4.三棱锥V-ABC中,VA=VB=AC=BC=2,AB=23,VC=1,则二面角V-AB-CA.30° B.45° C.60° D.90°5.已知,则的最小值为()A.2 B.0 C.-2 D.-46.在中,角,,所对的边分别为,,,若,则最大角的余弦值为()A. B. C. D.7.若关于x的方程sinx+cosx-2A.(2,94] B.[2,58.设变量想x、y满足约束条件为则目标函数的最大值为()A.0 B.-3 C.18 D.219.已知函数是奇函数,若,则的取值范围是()A. B. C. D.10.已知,是两条不同的直线,,是两个不同的平面,则下列说法正确的是()A.若,,则 B.若,,,则C.若,,则 D.若,,则二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则_________.12.如图1,动点在以为圆心,半径为1米的圆周上运动,从最低点开始计时,用时4分钟逆时针匀速旋转一圈后停止.设点的纵坐标(米)关于时间(分)的函数为,则该函数的图像大致为________.(请注明关键点)13.方程,的解集是__________.14.已知等边,为中点,若点是所在平面上一点,且满足,则__________.15.对于数列,若存在,使得,则删去,依此操作,直到所得到的数列没有相同项,将最后得到的数列称为原数列的“基数列”.若,则数列的“基数列”的项数为__________________.16.已知点及其关于原点的对称点均在不等式表示的平面区域内,则实数的取值范围是____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图所示,经过村庄有两条夹角为的公路,根据规划要在两条公路之间的区域内修建一工厂,分别在两条公路边上建两个仓库(异于村庄),要求(单位:千米),记.(1)将用含的关系式表示出来;(2)如何设计(即为多长时),使得工厂产生的噪声对居民影响最小(即工厂与村庄的距离最大)?18.已知函数f(x)=sin22x-π4(1)求当t=1时,求fπ(2)求gt(3)当-12≤t≤1时,要使关于t的方程g(t)=19.已知向量,.(Ⅰ)求;(Ⅱ)若向量与垂直,求的值.20.已知,.(1)求的值;(2)若,均为锐角,求的值.21.若函数满足且,则称函数为“函数”.(1)试判断是否为“函数”,并说明理由;(2)函数为“函数”,且当时,,求的解析式,并写出在上的单调递增区间;(3)在(2)的条件下,当时,关于的方程为常数有解,记该方程所有解的和为,求.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
在中,由余弦定理求得,在中,利用正弦定理求得BD,则可得CD.【详解】在中,由余弦定理可得.又,故为直角三角形,故.因为,且为锐角,故.由利用正弦定理可得,代值可得,故.故选:C.【点睛】本题考查利用正弦定理以及余弦定理解三角形,属于综合基础题.2、D【解析】
由约束条件画出可行域,将问题转化为在轴截距最小,通过平移可知当过时,取最大值,代入可得结果.【详解】由约束条件可得可行域如下图阴影部分所示:当取最大值时,在轴截距最小平移直线可知,当过时,在轴截距最小又本题正确选项:【点睛】本题考查线性规划中的最值问题的求解,关键是能够将问题转化为直线在轴截距的最值的求解问题,通过直线平移来进行求解,属于常考题型.3、D【解析】∵对于任意的x∈R,都有f(x−2)=f(2+x),∴函数f(x)是一个周期函数,且T=4.又∵当x∈[−2,0]时,f(x)=−1,且函数f(x)是定义在R上的偶函数,若在区间(−2,6]内关于x的方程恰有3个不同的实数解,则函数y=f(x)与y=在区间(−2,6]上有三个不同的交点,如下图所示:又f(−2)=f(2)=3,则对于函数y=,由题意可得,当x=2时的函数值小于3,当x=6时的函数值大于3,即<3,且>3,由此解得:<a<2,故答案为(,2).点睛:方程根的问题转化为函数的交点,利用周期性,奇偶性画出所研究区间的图像限制关键点处的大小很容易得解4、C【解析】
取AB中点O,连结VO,CO,由等腰三角形的性质可得,VO⊥AB,CO⊥AB,∠VOC是二面角V-AB-C的平面角,由此利用余弦定理能求出二面角的平面角V-AB-C的度数.【详解】取AB中点O,连结VO,CO,∴三棱锥V-ABC中,VA=VB=AC=BC=2,AB=23所以VO⊥AB,CO⊥AB∴∠VOC是二面角V-AB-C的平面角,VO=VCO=B∴cos∴∠VOC=60∴二面角V-AB-C的平面角的度数为60∘【点睛】本题主要考查三棱锥的性质、二面角的求法,属于中档题.求二面角的大小既能考查线线垂直关系,又能考查线面垂直关系,同时可以考查学生的计算能力,是高考命题的热点,求二面角的方法通常有两个思路:一是利用空间向量,建立坐标系,这种方法优点是思路清晰、方法明确,但是计算量较大;二是传统方法,求出二面角平面角的大小,这种解法的关键是找到平面角.5、D【解析】
根据不等式组画出可行域,借助图像得到最值.【详解】根据不等式组画出可行域得到图像:将目标函数化为,根据图像得到当目标函数过点时取得最小值,代入此点得到z=-4.故答案为:D.【点睛】利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(型)、斜率型(型)和距离型(型);(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解;(4)求最值:将最优解代入目标函数即可求出最大值或最小值。6、D【解析】
设,由余弦定理可求出.【详解】设,所以最大的角为,故选D.【点睛】本题主要考查了余弦定理,大边对大角,属于中档题.7、D【解析】
换元设t=sinx+cos【详解】sinx+cosx-2sint=sinx+cosa=t-如图:数a的取值范围为[2,故答案选D【点睛】本题考查了换元法,参数分离,函数图像,参数分离和换元法可以简化运算,是解题的关键.8、C【解析】
画出可行域如下图所示,由图可知,目标函数在点处取得最大值,且最大值为.故选C.【点睛】本小题主要考查利用线性规划求线性目标函数的最大值.这种类型题目的主要思路是:首先根据题目所给的约束条件,画图可行域;其次是求得线性目标函数的基准函数;接着画出基准函数对应的基准直线;然后通过平移基准直线到可行域边界的位置;最后求出所求的最值.属于基础题.9、C【解析】
由题意首先求得m的值,然后结合函数的性质求解不等式即可.【详解】函数为奇函数,则恒成立,即恒成立,整理可得:,据此可得:,即恒成立,据此可得:.函数的解析式为:,,当且仅当时等号成立,故奇函数是定义域内的单调递增函数,不等式即,据此有:,由函数的单调性可得:,求解不等式可得的取值范围是.本题选择C选项.【点睛】对于求值或范围的问题,一般先利用函数的奇偶性得出区间上的单调性,再利用其单调性脱去函数的符号“f”,转化为解不等式(组)的问题,若f(x)为偶函数,则f(-x)=f(x)=f(|x|).10、D【解析】
试题分析:,是两条不同的直线,,是两个不同的平面,在A中:若,,则,相交、平行或异面,故A错误;在B中:若,,,则,相交、平行或异面,故B错误;在C中:若,,则或,故C误;在D中:若,,由面面平行的性质定理知,,故D正确.考点:空间中直线、平面之间的位置关系.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】
在分式中分子分母同时除以,将代数式转化为正切来进行计算.【详解】由题意得,原式,故答案为.【点睛】本题考查弦的分式齐次式的计算,常利用弦化切的思想求解,一般而言,弦化切思想主要应用于以下两种题型:(1)弦的次分式齐次式:当分式是关于角的次分式齐次式,在分子分母中同时除以,可以将分式化为切的分式来求解;(2)弦的二次整式:当代数式是关于角弦的二次整式时,先除以,将代数式转化为关于角弦的二次分式齐次式,然后在分式分子分母中同时除以,可实现弦化切.12、【解析】
根据题意先得出,再画图.【详解】解:设,,,,,则当时,处于最低点,则,,可画图为:故答案为:【点睛】本题考查了三角模型的实际应用,关键是根据题意建立函数模型,属中档题.13、【解析】
用正弦的二倍角公式展开,得到,分两种情况讨论得出结果.【详解】解:即,即:或.①由,,得.②由,,得或.综上可得方程,的解集是:故答案为【点睛】本题考查正弦函数的二倍角公式,以及特殊角的正余弦值.14、0【解析】
利用向量加、减法的几何意义可得,再利用向量数量积的定义即可求解.【详解】根据向量减法的几何意义可得:,即,所以.故答案为:0【点睛】本题考查了向量的加、减法的几何意义以及向量的数量积,属于基础题.15、10【解析】
由题意可得,只需计算所有可能取值的个数即可.【详解】因为求的可能取值个数,由周期性,故只需考虑的情况即可.此时.一共19个取值,故只需分析,又由,故,,即不同的取值个数一共为个.即“基数列”分别为和共10项.故答案为10【点睛】本题主要考查余弦函数的周期性.注意到随着的增大的值周期变化,故只需考虑一个周期内的情况.16、【解析】
根据题意,设与关于原点的对称,分析可得的坐标,由二元一次不等式的几何意义可得,解可得的取值范围,即可得答案.【详解】根据题意,设与关于原点的对称,则的坐标为,若、均在不等式表示的平面区域内,则有,解可得:,即的取值范围为,;故答案为,.【点睛】本题考查二元一次不等式表示平面区域的问题,涉及不等式的解法,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】
(1)根据正弦定理,得到,进而可求出结果;(2)由余弦定理,得到,结合题中数据,得到,取最大值时,噪声对居民影响最小,即可得出结果.【详解】(1)因为,在中,由正弦定理可得:,所以,;(2)由题意,由余弦定理可得:,又由(1)可得,所以,当且仅当,即时,取得最大值,工厂产生的噪声对居民影响最小,此时.【点睛】本题主要考查正弦定理与余弦定理的应用,熟记正弦定理与余弦定理即可,属于常考题型.18、(1)-4(2)g(t)=t2【解析】
(1)直接代入计算得解;(2)先求出sin(2x-π4)∈[-12,1]【详解】(1)当t=1时,f(x)=sin22x-(2)因为x∈[π24,πf(x)=[sin(2x-当t<-12时,则当sin当-12≤t≤1时,则当当t>1时,则当sin(2x-π故g(t)=(3)当-12≤t≤1时,g(t)=-6t+1,令欲使g(t)=kt2-9有一个实根,则只需h(-解得k≤-2或所以k的范围:(-【点睛】本题主要考查三角函数的范围的计算,考查二次函数的最值的求法和方程的零点问题,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题.19、(Ⅰ)-1;(Ⅱ)【解析】
(Ⅰ)利用向量的数量积的坐标表示进行计算;(Ⅱ)由垂直关系,得到坐标间的等式关系,然后计算出参数的值.【详解】解:(Ⅰ)因向量,∴,∴(Ⅱ),∵向量与垂直,∴∴,∴【点睛】已知,若,则有;已知,若,则有.20、(1)(2)【解析】
(1)利用诱导公式可得的值,再利用两角和的正且公式可求得的值.
(2)先判断角的范围,再求的值,可求得的值.【详解】(1).,可得:(2)由,均为锐角,由(1)所以,所以所以【点睛】本题考查三角函数的诱导公式和角变换的应用,考查知值求值和角,属于中档题.21、(1)不是“M函数”;(2),;(3).【解析】
由不满足,得不是“M函数”,可得函数的周期,,当时,当时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 护士备考试题及答案
- 湖南公考试题及答案
- 高二语文月考试题及答案
- 团体活动评选活动方案
- 国外春假活动方案
- 团建漂流温泉活动方案
- 国庆墙布活动方案
- 图书线上展览活动方案
- 喝酒团建活动方案
- 国美开学活动方案
- 第7课《谁是最可爱的人》课件-2024-2025学年统编版语文七年级下册
- 宫颈癌的早期症状:及时发现早期宫颈癌的线索
- DB11-T 896-2020 苹果生产技术规程
- 台球助教培训流程
- 国家开放大学《社会保障基础》期末考试题库
- 防震减灾安全知识安全教育主题班会课件38
- 糖尿病的药物治疗课件
- 食品安全自查、从业人员健康管理、进货查验记录、食品安全事故处置等保证食品安全规章制度
- ISO 22003-1:2022《食品安全-第 1 部分:食品安全管理体系 审核与认证机构要求》中文版(机翻)
- 医院培训课件:《麻醉药品、精神药品管理培训》
- 室内装修拆除施工方案
评论
0/150
提交评论