广东省肇庆市实验中学、广东省高要市新桥中学两校2024年高一数学第二学期期末监测模拟试题含解析_第1页
广东省肇庆市实验中学、广东省高要市新桥中学两校2024年高一数学第二学期期末监测模拟试题含解析_第2页
广东省肇庆市实验中学、广东省高要市新桥中学两校2024年高一数学第二学期期末监测模拟试题含解析_第3页
广东省肇庆市实验中学、广东省高要市新桥中学两校2024年高一数学第二学期期末监测模拟试题含解析_第4页
广东省肇庆市实验中学、广东省高要市新桥中学两校2024年高一数学第二学期期末监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省肇庆市实验中学、广东省高要市新桥中学两校2024年高一数学第二学期期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的部分图像如图所示,则该函数的解析式为()A. B.C. D.2.已知函数的部分图象如图所示,则函数的表达式是()A. B.C. D.3.某社区义工队有24名成员,他们年龄的茎叶图如下表所示,先将他们按年龄从小到大编号为1至24号,再用系统抽样方法抽出6人组成一个工作小组,则这个小组年龄不超过55岁的人数为()3940112551366778889600123345A.1 B.2 C.3 D.44.若两个正实数,满足,且不等式有解,则实数的取值范围是()A. B. C. D.5.《莱茵德纸草书》是世界上最古老的数学著作之一.书中有这样一道题目:把个面包分给个人,使每个人所得成等差数列,且使较大的三份之和的是较小的两份之和,则最小的一份为()A. B. C. D.6.若,则的最小值为()A. B. C.3 D.27.某象棋俱乐部有队员5人,其中女队员2人,现随机选派2人参加一个象棋比赛,则选出的2人中恰有1人是女队员的概率为()A. B. C. D.8.已知等差数列的前项和为.且,则()A. B. C. D.9.设变量满足约束条件,则目标函数的最大值为()A.3 B.4 C.18 D.4010.的内角的对边分别是,若,,,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的最小正周期为.12.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.现从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为.13.已知直线y=b(0<b<1)与函数f(x)=sinωx(ω>0)在y轴右侧依次的三个交点的横坐标为x1=,x2=,x3=,则ω的值为______14.在数列中,,,,则_____________.15.在等差数列中,若,则______.16.已知六棱锥的底面是正六边形,平面,.则下列命题中正确的有_____.(填序号)①PB⊥AD;②平面PAB⊥平面PAE;③BC∥平面PAE;④直线PD与平面ABC所成的角为45°.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)当时,判断并证明函数的奇偶性;(2)当时,判断并证明函数在上的单调性.18.某百货公司1~6月份的销售量与利润的统计数据如下表:月份123456销售量x(万件)1011131286利润y(万元)222529261612附:(1)根据2~5月份的统计数据,求出关于的回归直线方程(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差均不超过万元,则认为得到的回归直线方程是理想的,试问所得回归直线方程是否理想?(参考公式:,)19.某城市交通部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照分成5组,制成如图所示频率分直方图.(1)求图中x的值;(2)求这组数据的平均数和中位数;(3)已知满意度评分值在内的男生数与女生数3:2,若在满意度评分值为的人中随机抽取2人进行座谈,求2人均为男生的概率.20.智能手机的出现,改变了我们的生活,同时也占用了我们大量的学习时间.某市教育机构从名手机使用者中随机抽取名,得到每天使用手机时间(单位:分钟)的频率分布直方图(如图所示),其分组是:,.(1)根据频率分布直方图,估计这名手机使用者中使用时间的中位数是多少分钟?(精确到整数)(2)估计手机使用者平均每天使用手机多少分钟?(同一组中的数据以这组数据所在区间中点的值作代表)(3)在抽取的名手机使用者中在和中按比例分别抽取人和人组成研究小组,然后再从研究小组中选出名组长.求这名组长分别选自和的概率是多少?21.已知直线恒过定点,圆经过点和定点,且圆心在直线上.(1)求圆的方程;(2)已知点为圆直径的一个端点,若另一端点为点,问轴上是否存在一点,使得为直角三角形,若存在,求出的值;若不存在,说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

根据图象求出即可得到函数解析式.【详解】显然,因为,所以,所以,由得,所以,即,,因为,所以,所以.故选:A【点睛】本题考查了根据图象求函数解析式,利用周期求,代入最高点的坐标求是解题关键,属于基础题.2、D【解析】

根据函数的最值求得,根据函数的周期求得,根据函数图像上一点的坐标求得,由此求得函数的解析式.【详解】由题图可知,且即,所以,将点的坐标代入函数,得,即,因为,所以,所以函数的表达式为.故选D.【点睛】本小题主要考查根据三角函数图像求三角函数的解析式,属于基础题.3、B【解析】

求出样本间隔,结合茎叶图求出年龄不超过55岁的有8人,然后进行计算即可.【详解】解:样本间隔为,年龄不超过55岁的有8人,则这个小组中年龄不超过55岁的人数为人.故选:.【点睛】本题主要考查茎叶图以及系统抽样的应用,求出样本间隔是解决本题的关键,属于基础题.4、D【解析】

利用基本不等式求得的最小值,根据不等式存在性问题,解一元二次不等式求得的取值范围.【详解】由于,而不等式有解,所以,即,解得或.故选:D【点睛】本小题主要考查利用基本不等式求最小值,考查不等式存在性问题的求解,考查一元二次不等式的解法,属于中档题.5、A【解析】

设5人分到的面包数量从小到大记为,设公差为,可得,,求出,根据等差数列的通项公式,得到关于关系式,即可求出结论.【详解】设5人分到的面包数量从小到大记为,设公差为,依题意可得,,,,解得,.故选:A.【点睛】本题以数学文化为背景,考查等差数列的前项和、通项公式基本量的计算,等差数列的性质应用是解题的关键,属于中档题.6、A【解析】

由题意知,,,再由,进而利用基本不等式求最小值即可.【详解】由题意,,因为,所以,,所以,当且仅当,即时,取等号.故选:A.【点睛】本题考查利用基本不等式求最值,考查学生的计算求解能力,属于基础题.7、B【解析】

直接利用概率公式计算得到答案.【详解】故选:【点睛】本题考查了概率的计算,属于简单题.8、C【解析】

根据等差数列性质可知,求得,代入可求得结果.【详解】本题正确选项:【点睛】本题考查三角函数值的求解,关键是能够灵活应用等差数列下标和的性质,属于基础题.9、C【解析】不等式所表示的平面区域如下图所示,当所表示直线经过点时,有最大值考点:线性规划.10、B【解析】,所以,整理得求得或若,则三角形为等腰三角形,不满足内角和定理,排除.【考点定位】本题考查正弦定理和余弦定理的应用,考查运算能力和分类讨论思想.当求出后,要及时判断出,便于三角形的初步定型,也为排除提供了依据.如果选择支中同时给出了或,会增大出错率.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】试题分析:,所以函数的周期等于考点:1.二倍角降幂公式;2.三角函数的周期.12、.【解析】试题分析:从中任取3个不同的数,有,,,,,,,,,共10种,其中只有为勾股数,故这3个数构成一组勾股数的概率为.考点:用列举法求随机事件的概率.13、1【解析】

由题得函数的周期为解之即得解.【详解】由题得函数的周期为.故答案为1【点睛】本题主要考查三角函数的图像和性质,考查三角函数的周期,意在考查学生对这些知识的理解掌握水平和分析推理能力.14、5【解析】

利用递推关系式依次求值,归纳出:an+6=an,再利用数列的周期性,得解.【详解】∵a1=1,a2=5,an+2=an+1-an(n∈N*),∴a3=a2-a1=5-1=4,同理可得:a4=-1,a5=-5,a6=-4,a7=1,a8=5,…,∴an+6=an.则a2018=a6×336+2=a2=5【点睛】本题考查了递推关系、数列的周期性,考查了推理能力与计算能力.15、【解析】

利用等差中项的性质可求出的值.【详解】由等差中项的性质可得,解得.故答案为:.【点睛】本题考查利用等差中项的性质求项的值,考查计算能力,属于基础题.16、②④【解析】

利用题中条件,逐一分析答案,通过排除和筛选,得到正确答案.【详解】∵AD与PB在平面的射影AB不垂直,∴①不成立;∵PA⊥平面ABC,∴PA⊥AB,在正六边形ABCDEF中,AB⊥AE,PAAE=A,∴AB⊥平面PAE,且AB面PAB,∴平面PAB⊥平面PAE,故②成立;∵BC∥AD∥平面PAD,平面PAD平面PAE=PA,∴直线BC∥平面PAE也不成立,即③不成立.在Rt△PAD中,PA=AD=2AB,∴∠PDA=45°,故④成立.故答案为②④.【点睛】本题考查命题真假的判断,解题时要注意直线与平面成的角、直线与平面垂直的性质的合理运用,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析.【解析】

(1)将代入函数的解析式,利用函数的奇偶性定义来证明出函数的奇偶性;(2)将函数的解析式化为,然后利用函数单调性的定义证明出函数在上的单调性.【详解】(1)当时,,函数为上的奇函数.证明如下:,其定义域为,则,故函数为奇函数;(2)当时,函数在上单调递减.证明如下:,任取,则,又由,则,则有,即.因此,函数为上的减函数.【点睛】本题考查函数单调性与奇偶性的判定与证明,在利用定义证明函数的单调性与奇偶性时,要熟悉定义法证明函数奇偶性与单调性的基本步骤,考查逻辑推理能力与计算能力,属于中等题.18、(1);(2)见解析.【解析】

(1)求出,由公式,得的值,从而求出的值,从而得到关于的线性回归方程;(2)将月份和月份的销售量值代入回归直线方程,求出预测值,并计算预测值与实际值之间的误差,结合题意来判断(1)中所得回归直线方程是否理想。【详解】(1)计算得,,,则,;故关于的回归直线方程为.(2)当时,,此时;当时,,此时.故所得的回归直线方程是理想的.【点睛】本题考查回归直线方程的应用,解题的关键就是弄清楚最小二乘法公式,并准确代入数据计算,着重考察计算能力,属于中等题。19、(1)0.02(2)平均数77,中位数(3).【解析】

(1)由频率分布直方图的性质列方程能求出x.(2)由频率分布直方图能求出这组数据的平均数和中位数.(3)满意度评分值在[50,60)内有5人,其中男生3人,女生2人,记“满意度评分值为[50,60)的人中随机抽取2人进行座谈,2人均为男生”为事件A,利用古典概型能求出2人均为男生的概率.【详解】(1)由,解得.(2)这组数据的平均数为.中位数设为m,则,解得.(3)满意度评分值在内有人,其中男生3人,女生2人.记为记“满意度评分值为的人中随机抽取2人进行座谈,2人均为男生”为事件A则总基本事件个数为10个,A包含的基本事件个数为3个,利用古典概型概率公式可知.【点睛】本题考查频率平均数、中位数、概率的求法,考查频率分布直方图的性质、古典概型等基础知识,考查运算求解能力,是基础题.20、(1)分钟.(2)58分钟;(3)【解析】

(1)根据中位数将频率二等分可直接求得结果;(2)每组数据中间值与对应小矩形的面积乘积的总和即为平均数;(3)采用列举法分别列出所有基本事件和符合题意的基本事件,根据古典概型概率公式求得结果.【详解】(1)设中位数为,则解得:(分钟)这名手机使用者中使用时间的中位数是分钟(2)平均每天使用手机时间为:(分钟)即手机使用者平均每天使用手机时间为分钟(3)设在内抽取的两人分别为,在内抽取的三人分别为,则从五人中选出两人共有以下种情况:两名组长分别选自和的共有以下种情况:所求概率【点睛】本题考查根据频率分布直方图计算平均数和中位数、古典概型概率问题的求解;关键是能够明确平均数和中位数的估算原理,从而计算得到结果;解决古典概型的常用方法为列举法,属于常考题型.21、(1);(2)见解析【解析】

(1)先求出直线过定点,设圆的一般方程,由题意列方程组,即可求圆的方程;(2)由(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论