2024届浙江省宁波诺丁汉大学附中数学高一下期末学业水平测试模拟试题含解析_第1页
2024届浙江省宁波诺丁汉大学附中数学高一下期末学业水平测试模拟试题含解析_第2页
2024届浙江省宁波诺丁汉大学附中数学高一下期末学业水平测试模拟试题含解析_第3页
2024届浙江省宁波诺丁汉大学附中数学高一下期末学业水平测试模拟试题含解析_第4页
2024届浙江省宁波诺丁汉大学附中数学高一下期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届浙江省宁波诺丁汉大学附中数学高一下期末学业水平测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.与直线平行,且与直线交于轴上的同一点的直线方程是()A. B. C. D.2.圆的圆心坐标和半径分别为()A.,2 B.,2 C.,4 D.,43.已知函数的零点是和(均为锐角),则()A. B. C. D.4.下列函数中,在区间上单调递增的是()A. B. C. D.5.若抛物线上一点到焦点的距离是该点到轴距离的3倍,则()A. B. C. D.76.某高级中学共有学生3000人,其中高二年级有学生800人,高三年级有学生1200人,为了调查学生的课外阅读时长,现用分层抽样的方法从所有学生中抽取75人进行问卷调查,则高一年级被抽取的人数为()A.20 B.25 C.30 D.357.集合,则()A. B. C. D.8.(卷号)2397643038875648(题号)2398229448728576(题文)已知直线、,平面、,给出下列命题:①若,,且,则;②若,,且,则;③若,,且,则;④若,,且,则.其中正确的命题是()A.①② B.③④ C.①④ D.②③9.下列各数中最小的数是()A. B. C. D.10.在下列各图中,每个图的两个变量具有相关关系的图是()A.(1)(2) B.(1)(3) C.(2)(4) D.(2)(3)二、填空题:本大题共6小题,每小题5分,共30分。11.已知、、分别是的边、、的中点,为的外心,且,给出下列等式:①;②;③;④其中正确的等式是_________(填写所有正确等式的编号).12.给出以下四个结论:①平行于同一直线的两条直线互相平行;②垂直于同一平面的两个平面互相平行;③若,是两个平面;,是异面直线;且,,,,则;④若三棱锥中,,,则点在平面内的射影是的垂心;其中错误结论的序号为__________.(要求填上所有错误结论的序号)13.已知数列满足,若,则数列的通项______.14.函数的值域为_____________.15.设奇函数的定义域为R,且对任意实数满足,若当∈[0,1]时,,则____.16.已知,,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图1所示,在四边形中,,且,,.(1)求的面积;(2)若,求的长.图1图218.已知为第三象限角,.(1)化简(2)若,求的值19.如图,在四棱锥中,底面是正方形,侧面⊥底面,若分别为的中点.(Ⅰ)求证:平面;(Ⅱ)求证:平面⊥平面.20.如图,已知平面平行于三棱锥的底面,等边所在的平面与底面垂直,且,设(1)求证:且;(2)求二面角的余弦值.21.已知函数,其图象与轴相邻的两个交点的距离为.(1)求函数的解析式;(2)若将的图象向左平移个长度单位得到函数的图象恰好经过点,求当取得最小值时,在上的单调区间.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

直线交于轴上的点为,与直线平行得到斜率,根据点斜式得到答案.【详解】与直线平行直线交于轴上的点为设直线方程为:代入交点得到即故答案选A【点睛】本题考查了直线的平行关系,直线与坐标轴的交点,属于基础题型.2、B【解析】试题分析:,所以圆心坐标和半径分别为(2,0)和2,选B.考点:圆标准方程3、B【解析】

将函数零点转化的解,利用韦达定理和差公式得到,得到答案.【详解】的零点是方程的解即均为锐角故答案为B【点睛】本题考查了函数零点,韦达定理,和差公式,意在考查学生的综合应用能力.4、A【解析】

判断每个函数在上的单调性即可.【详解】解:在上单调递增,,和在上都是单调递减.故选:A.【点睛】考查幂函数、指数函数、对数函数和反比例函数的单调性.5、A【解析】由题意,焦点坐标,所以,解得,故选A。6、B【解析】

通过计算三个年级的人数比例,于是可得答案.【详解】抽取比例为753000=140,高一年级有【点睛】本题主要考查分层抽样的相关计算,难度很小.7、C【解析】

先求解不等式化简集合A和B,再根据集合的交集运算求得结果即可.【详解】因为集合,集合或,所以.故本题正确答案为C.【点睛】本题考查一元二次不等式,分式不等式的解法和集合的交集运算,注意认真计算,仔细检查,属基础题.8、C【解析】

逐一判断各命题的正误,可得出结论.【详解】对于命题①,若,,且,则,该命题正确;对于命题②,若,,且,则与平行或相交,该命题错误;对于命题③,若,,且,则与平行、垂直或斜交,该命题错误;对于命题④,若,,且,则,该命题正确.故选:C.【点睛】本题考查线面、面面位置关系有关命题真假的判断,在判断时,可充分利用线面、面面平行或垂直的判定与性质定理,也可以结合几何体模型进行判断,考查推理能力,属于中等题.9、D【解析】

将选项中的数转化为十进制的数,由此求得最小值的数.【详解】依题意,,,,故最小的为D.所以本小题选D.【点睛】本小题主要考查不同进制的数比较大小,属于基础题.10、D【解析】

仔细观察图象,寻找散点图间的相互关系,主要观察这些散点是否围绕一条曲线附近排列着,由此能够得到正确答案.【详解】散点图(1)中,所有的散点都在曲线上,所以(1)具有函数关系;

散点图(2)中,所有的散点都分布在一条直线的附近,所以(2)具有相关关系;

散点图(3)中,所有的散点都分布在一条曲线的附近,所以(3)具有相关关系,

散点图(4)中,所有的散点杂乱无章,没有分布在一条曲线的附近,所以(4)没有相关关系.

故选D.【点睛】本题考查散点图和相关关系,是基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、①②④.【解析】

根据向量的中点性质与向量的加法运算,可判断①②③.【详解】、、分别是的边、、的中点,为的外心,且,设三条中线交点为G,如下图所示:对于①,由三角形中线性质及向量加法运算可知,所以①正确;对于②,,所以②正确;对于③,,所以③错误;对于,由外心性质可知,所以故正确.综上可知,正确的为①②④.故答案为:①②④.【点睛】本题考查了向量的线性运算,三角形外心的性质及应用,属于基础题.12、②【解析】

③①可由课本推论知正确;②可举反例;④可进行证明.【详解】命题①平行于同一直线的两条直线互相平行,由课本推论知是正确的;②垂直于同一平面的两个平面互相平行,是错误的,例如正方体的上底面,前面和右侧面,是互相垂直的关系;③根据课本推论知结论正确;④若三棱锥中,,,则点在平面内的射影是的垂心这一结论是正确的;作出B在底面的射影O,连结AO,DO,则,同理,,进而得到O为三角形的垂心.

故答案为②【点睛】这个题目考查了命题真假的判断,一般这类题目可以通过课本的性质或者结论进行判断;也可以通过举反例来解决这个问题.13、【解析】

直接利用数列的递推关系式和叠加法求出结果.【详解】因为,所以当时,.时也成立.所以数列的通项.【点睛】本题考查的知识要点:数列的通项公式的求法及应用,叠加法在数列中的应用,主要考察学生的运算能力和转换能力,属于基础题.14、【解析】

分析函数在区间上的单调性,由此可求出该函数在区间上的值域.【详解】由于函数和函数在区间上均为增函数,所以,函数在区间上也为增函数,且,,当时,,因此,函数的值域为.故答案为:.【点睛】本题考查函数值域的求解,解题的关键就是判断出函数的单调性,考查分析问题和解决问题的能力,属于中等题.15、【解析】

根据得到周期,再利用周期以及奇函数将自变量转变到给定区间计算函数值.【详解】因为,所以,所以,又因为,所以,则,故,又因为是奇函数,所以,则.【点睛】(1)形如的函数是周期函数,周期;(2)若要根据奇偶性求解分段函数的表达式,记住一个原则:“用未知表示已知”,也就是将自变量变形,利用已知范围和解析式求解.16、【解析】

由二倍角求得α,则tanα可求.【详解】由sin2α=sinα,得2sinαcosα=sinα,∵,∴sinα≠0,则,即.∴.故答案为:.【点睛】本题考查三角函数的恒等变换及化简求值,考查公式的灵活应用,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)利用已知条件求出D角的正弦函数值,然后求△ACD的面积;

(2)利用余弦定理求出AC,通过,利用余弦定理求解AB的长.【详解】(1)因为,,所以,又,所以,所以.(2)由余弦定理可得,因为,所以,解得.【点睛】本题考查余弦定理以及正弦定理的应用,基本知识的考查,考查学生分析解决问题的能力,属于中档题.18、(1)见解析;(2).【解析】利用指数运算、指对互化、对数运算求解试题分析:(1)(2)由,得.又已知为第三象限角,所以,所以,所以=………………10分考点:本题主要考查了诱导公式、同角三角函数基本关系以及三角函数符号的判定.点评:解决此类问题的关键是掌握诱导公式、同角三角函数基本关系以及三角函数符好的判定方法.诱导公式的记忆应结合图形记忆较好,难度一般.19、(1)证明见解析;(2)证明见解析.【解析】

(Ⅰ)利用线面平行的判定定理,只需证明EF∥PA,即可;(Ⅱ)先证明线面垂直,CD⊥平面PAD,再证明面面垂直,平面PAD⊥平面PDC

即可.【详解】(Ⅰ)证明:连结AC,在正方形ABCD中,F为BD中点,正方形对角线互相平分,∴F为AC中点,又E是PC中点,在△CPA中,EF∥PA,且PA⊆平面PAD,EF⊄平面PAD,∴EF∥平面PAD.(Ⅱ)∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,CD⊥AD,平面∴CD⊥平面PAD,∵CD⊂平面PDC,∴平面PAD⊥平面PDC【点睛】本题主要考查空间直线与平面平行的判定定理,以及平面与平面垂直的判定定理,要求熟练掌握相关的判定定理.20、(1)证明见解析;(1)【解析】

(1)由平面∥平面,根据面面平行的性质定理,可得,,再由,得到.由平面平面,根据面面垂直的性质定理可得平面,从而有.(2)过作于,根据题意有平面,过D作于H,连结AH,由三垂线定理知,所以是二面角的平面角.然后在在中,在中,利用三角形相似求得再在求解.【详解】(1)证明:∵平面∥平面,∴,,∵,,又∵平面平面,平面平面,∴平面,平面,∴.(2)过作于,∵为正三角形,∴D为中点,∵平面∴又∵,∴平面.在等边三角形中,,过D作于H,连结AH,由三垂线定理知,∴是二面角的平面角.在中,~,,∴,,∴.【点睛】本题主要考查几何体中面面平行的性质定理和面面垂直的性质定理及二角面角问题,还考查了空间想象,抽象概括,推理论证的能力,属于中档题.21、(1)(2)单调增区间为,;单调减区间为.【解析】

(1)利用两角差的正弦公式,降幂公式以及辅助角公式化简函数解析式,根据其图象与轴相邻的两个交点的距离为,得出周期,利用周期公式得出,即可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论