版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省腾冲县第一中学2025届数学高一下期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,是两条不同的直线,,是两个不同的平面,若,,则下列命题正确的是A.若,,则B.若,且,则C.若,,则D.若,且,则2.已知某线路公交车从6:30首发,每5分钟一班,甲、乙两同学都从起点站坐车去学校,若甲每天到起点站的时间是在6:30~7:00任意时刻随机到达,乙每天到起点站的时间是在6:45~7:15任意时刻随机到达,那么甲、乙两人搭乘同一辆公交车的概率是()A. B. C. D.3.若,则在中,正数的个数是()A.16 B.72 C.86 D.1004.已知数列的前项和为,令,记数列的前项为,则()A. B. C. D.5.下列各角中,与126°角终边相同的角是()A. B. C. D.6.中国古代的“礼”“乐”“射”“御”“书”“数”合称“六艺”.某校国学社团准备于周六上午9点分别在6个教室开展这六门课程讲座,每位同学只能选择一门课程,则甲乙两人至少有人选择“礼”的概率是()A. B. C. D.7.若a<b<0,则下列不等式关系中,不能成立的是()A. B. C. D.8.函数的部分图像如图所示,如果,且,则等于()A. B. C. D.19.已知函数与的图象上存在关于轴对称的点,则实数的取值范围是().A. B. C. D.10.已知l,m是两条不同的直线,m⊥平面α,则“”是“l⊥m”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.中,,,,则________.12.已知向量,向量,若与垂直,则__________.13.在平面直角坐标系中,定义两点之间的直角距离为:现有以下命题:①若是轴上的两点,则;②已知,则为定值;③原点与直线上任意一点之间的直角距离的最小值为;④若表示两点间的距离,那么.其中真命题是__________(写出所有真命题的序号).14.由于坚持经济改革,我国国民经济继续保持了较稳定的增长.某厂2019年的产值是100万元,计划每年产值都比上一年增加,从2019年到2022年的总产值为______万元(精确到万元).15.设等比数列的公比,前项和为,则.16.已知sin=,则cos=________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设,已知函数,.(1)若是的零点,求不等式的解集:(2)当时,,求的取值范围.18.设正项等比数列且的等差中项为.(1)求数列的通项公式;(2)若,数列的前n项为,数列满足,为数列的前项和,求.19.在中,角对应的边分别是,且.(1)求角;(2)若,求的取值范围.20.在中,内角,,的对边分别为,,,已知,.(Ⅰ)求的值;(Ⅱ)若,求边的值.21.如图,三棱柱,底面,且为正三角形,,,为中点.(1)求证:直线平面;(2)求二面角的大小.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
利用面面、线面位置关系的判定和性质,直接判定.【详解】解:对于A,若n∥α,m∥β,则α∥β或α与β相交,故错;对于B,若α∩β=l,且m⊥l,则m与β不一定垂直,故错;对于C,若m∥n,m∥β,则α与β位置关系不定,故错;对于D,∵α∩β=l,∴l⊂β,∵m∥l,则m∥β,故正确.故选D.【点睛】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间中线线、线面、面面间相互关系的合理运用.2、D【解析】
根据甲、乙的到达时间,作出可行域,然后考虑甲、乙能同乘一辆公交车对应的区域面积,根据几何概型的概率求解方法即可求解出对应概率.【详解】设甲到起点站的时间为:时分,乙到起点站的时间为时分,所以,记事件为甲乙搭乘同一辆公交车,所以,作出可行域以及目标区域如图所示:由几何概型的概率计算可知:.故选:D.【点睛】本题考查利用线性规划的可行域解决几何概型中的面积模型问题,对于分析和转化的能力要求较高,注意几何概型中面积模型的概率计算方法,难度较难.3、C【解析】
令,则,当1≤n≤14时,画出角序列终边如图,其终边两两关于x轴对称,故有均为正数,而,由周期性可知,当14k-13≤n≤14k时,Sn>0,而,其中k=1,2,…,7,所以在中有14个为0,其余都是正数,即正数共有100-14=86个,故选C.4、B【解析】
由数列的前项和求通项,再由数列的周期性及等比数列的前项和求解.【详解】因为,当时,得;当,且时,,不满足上式,∴,所以,当时,;当是偶数时,为整数,则,所以;故对于任意正整数,均有:因为,所以.因为为偶数,所以,而,所以.故选:B.【点睛】本题考查数列的函数概念与表示、余弦函数的性质、正弦函数的诱导公式以及数列求和,解题的关键是当时,,和的推导,本题属于难题.5、B【解析】
写出与126°的角终边相同的角的集合,取k=1得答案.【详解】解:与126°的角终边相同的角的集合为{α|α=126°+k•360°,k∈Z}.取k=1,可得α=486°.∴与126°的角终边相同的角是486°.故选B.【点睛】本题考查终边相同角的计算,是基础题.6、D【解析】
甲乙两人至少有人选择“礼”的对立事件是甲乙两人都不选择“礼”,求出后者的概率即可【详解】由题意,甲和乙不选择“礼”的概率是,且相互独立所以甲乙两人都不选择“礼”的概率是所以甲乙两人至少有人选择“礼”的概率是故选:D【点睛】当遇到“至多”“至少”型题目时,一般用间接法求会比较简单,即先求出此事件的对立事件的概率,然后即可得出原事件的概率.7、B【解析】
根据的单调性,可知成立,不成立;根据和的单调性,可知成立.【详解】在上单调递减,成立又,不成立在上单调递增,成立在上单调递减,成立故选:【点睛】本题考查利用函数单调性比较大小的问题,关键是能够建立起合适的函数模型,根据自变量的大小关系,结合单调性得到结果.8、D【解析】
试题分析:观察图象可知,其在的对称轴为,由已知,选.考点:正弦型函数的图象和性质9、A【解析】若函数f(x)=a﹣x2(1≤x≤2)与g(x)=2x+1的图象上存在关于x轴对称的点,则方程a﹣x2=﹣(2x+1)⇔a=x2﹣2x﹣1在区间[1,2]上有解,令g(x)=x2﹣2x﹣1,1≤x≤2,由g(x)=x2﹣2x﹣1的图象是开口朝上,且以直线x=1为对称轴的抛物线,故当x=1时,g(x)取最小值﹣2,当x=2时,函数取最大值﹣1,故a∈[﹣2,﹣1],故选:A.点睛:图像上存在关于轴对称的点,即方程a﹣x2=﹣(2x+1)⇔a=x2﹣2x﹣1在区间[1,2]上有解,转化为方程有解求参的问题,变量分离,画出函数图像,使得函数图像和常函数图像有交点即可;这是解决方程有解,图像有交点,函数有零点的常见方法。10、A【解析】
根据充分条件和必要条件的定义,结合线面垂直的性质进行判断即可.【详解】当m⊥平面α时,若l∥α”则“l⊥m”成立,即充分性成立,若l⊥m,则l∥α或l⊂α,即必要性不成立,则“l∥α”是“l⊥m”充分不必要条件,故选:A.【点睛】本题主要考查充分条件和必要条件的判断,结合线面垂直的性质和定义是解决本题的关键.难度不大,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、7【解析】
在中,利用余弦定理得到,即可求解,得到答案.【详解】由余弦定理可得,解得.故答案为:7.【点睛】本题主要考查了余弦定理的应用,其中解答中熟记三角形的余弦定理,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.12、;【解析】
由计算可得.【详解】,∵与垂直,∴,.故答案为-1.【点睛】本题考查向量垂直的坐标运算.由向量垂直得其数量积为0,本题属于基础题.13、①②④【解析】
根据新定义的直角距离,结合具体选项,进行逐一分析即可.【详解】对①:因为是轴上的两点,故,则,①正确;对②:根据定义因为,故,②正确;对③:根据定义,当且仅当时,取得最小值,故③错误;对④:因为,由不等式,即可得,故④正确.综上正确的有①②④故答案为:①②④.【点睛】本题考查新定义问题,涉及同角三角函数关系,绝对值三角不等式,属综合题.14、464【解析】
根据等比数列求和公式求解【详解】由题意得从2019年到2022年各年产值构成以100为首项,1.1为公比的等比数列,其和为【点睛】本题考查等比数列应用以及等比数列求和公式,考查基本分析求解能力,属基础题15、15【解析】分析:运用等比数列的前n项和公式与数列通项公式即可得出的值.详解:数列为等比数列,故答案为15.点睛:本题考查了等比数列的通项公式与前n项和公式,考查学生对基本概念的掌握能力与计算能力.16、【解析】
由sin=,得cos2=1-2sin2=,即cos=,所以cos=cos=,故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)利用可求得,将不等式化为;分别在和两种情况下解不等式可求得结果;(2)当时,,可将变为在上恒成立;分类讨论得到解析式,从而可得单调性;分别在、、三种情况下,利用构造不等式,解不等式求得结果.【详解】(1)是的零点由得:当时,,即,解得:当时,,即,解得:的解集为:(2)当时,,即:时,在上恒成立①当时,恒成立符合题意②当时,在上单调递增;在上单调递减;在上单调递增当时,,解得:当时,,解集为当时,,解得:综上所述,的取值范围为:【点睛】本题考查含绝对值不等式的求解、恒成立问题的求解;求解恒成立问题的关键是能够通过分类讨论的方式去掉绝对值符号,结合函数单调性,将问题转化为所求参数与函数最值之间的大小关系的比较问题,从而构造不等式求得结果.18、(1);(2).【解析】
(1)利用已知条件列出方程,求出首项与公比,然后求解通项公式.(2)化简数列的通项公式,利用裂项相消法求解数列的和即可.【详解】(1)设等比数列的公比为,由题意,得,解得,所以.(2)由(1)得,∴,∴,∴.【点睛】本题考查数列的递推关系式以及数列求和,考查转化思想以及计算能力.19、(1);(2).【解析】
(1)依照条件形式,使用正弦定理化角为边,再用余弦定理求出,从而得出角的值;(2)先利用余弦定理找出的关系,再利用基本不等式放缩,求出的取值范围.【详解】(1)由及正弦定理得,,由余弦定理得,又,所以(2)由及,得,即所以,所以,当且仅当时,等号成立,又,所以.【点睛】本题主要考查利用正余弦定理解三角形,以及利用基本不等式求等式条件下的取值范围问题,第二问也可以采用正弦定理化边为角,利用“同一法”求出的取值范围.20、(Ⅰ);(Ⅱ)【解析】
(Ⅰ)利用,,然后用正弦定理求解即可(Ⅱ)利用,然后利用余弦定理求解即可【详解】(Ⅰ)在中,由正弦定理,及,,可得.(Ⅱ)由及,可得,由余弦定理,即,可得.【点睛】本题考查正弦以及余弦定理的应用,属于基础题21、(1)证明见解析;(2).【解析】
(1)连交于
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人工呼吸设备产品供应链分析
- 卫生制剂零售或批发服务行业市场调研分析报告
- 个人背景调查行业相关项目经营管理报告
- 医用矿泉水产品供应链分析
- 工商业公司的商业管理辅助行业营销策略方案
- 为会议中心提供餐饮供应服务行业经营分析报告
- 家用杀真菌剂产品供应链分析
- 为企业提供商业咨询行业营销策略方案
- 电修部门的卓越之旅-半年成绩与未来展望
- 电动起重机项目营销计划书
- 知识点填空练习-2024-2025学年统编版道德与法治七年级上册
- 拒绝校园欺凌教育主题课件
- DB37T-动物疫病鉴别检测技术 第1部分:猪瘟强毒与猪瘟疫苗弱毒
- 现代财产保险(中国)有限公司售电公司履约保证保险条款
- 2024年省国资委选聘兼职外部董事人选(高频重点复习提升训练)共500题附带答案详解
- 2023年10月上海开放大学工作人员招考聘用笔试历年典型考题及考点剖析附答案详解
- 2024年中国移动咪咕校园招聘(高频重点提升专题训练)共500题附带答案详解
- 区块链技术在银行业的应用与创新
- 《第12课 编码长度与信息量》参考课件1
- 人教PEP版英语四上《Unit 4 My Home》教学设计
- DL∕T 325-2010 电力行业职业健康监护技术规范
评论
0/150
提交评论