版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省兰州市第五中学2025届高一下数学期末质量跟踪监视试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,,,,是外接圆上一动点,若,则的最大值是()A.1 B. C. D.22.如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是()A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱3.已知函数(,)的部分图像如图所示,则的值分别是()A. B.C. D.4.圆上的一点到直线的最大距离为()A. B. C. D.5.已知扇形的弧长是8,其所在圆的直径是4,则扇形的面积是()A.8 B.6 C.4 D.166.已知数列、、、、,可猜想此数列的通项公式是().A. B.C. D.7.不论为何值,直线恒过定点A. B. C. D.8.下列结论正确的是().A.若ac<bc,则a<b B.若a2<C.若a>b,c<0,则ac<bc D.若a<b9.平行四边形中,M为的中点,若.则=()A. B.2 C. D.10.半圆的直径,为圆心,是半圆上不同于的任意一点,若为半径上的动点,则的最小值是()A.2 B.0 C.-2 D.4二、填空题:本大题共6小题,每小题5分,共30分。11.现用一半径为,面积为的扇形铁皮制作一个无盖的圆锥形容器(假定衔接部分及铁皮厚度忽略不计,且无损耗),则该容器的容积为__________.12.方程在区间上的解为___________.13.设,且,则的取值范围是______.14.已知数列满足,,,则数列的通项公式为________.15.已知,则的最小值为_______.16.某校老年、中年和青年教师的人数分别为90,180,160,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有32人,则抽取的样本中老年教师的人数为_____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.随着中国经济的加速腾飞,现在手有余钱的中国家庭数量越来越多,在房价居高不下、股市动荡不定的形势下,为了让自己的财富不缩水,很多家庭选择了投资理财.为了了解居民购买理财产品的情况,理财公司抽样调查了该市2018年10户家庭的年收入和年购买理财产品支出的情况,统计资料如下表:年收入x(万元)204040606060707080100年理财产品支出y(万元)9141620211918212223(1)由该样本的散点图可知y与x具有线性相关关系,请求出回归方程;(求时利用的准确值,,的最终结果精确到0.01)(2)若某家庭年收入为120万元,预测某年购买理财产品的支出.(参考数据:,,,)18.在我国古代数学名著《九章算术》中将由四个直角三角形组成的四面体称为“鳖臑”.已知三棱维P-ABC中,PA⊥底面ABC.(1)从三棱锥P-ABC中选择合适的两条棱填空_________⊥________,则该三棱锥为“鳖臑”;(2)如图,已知AD⊥PB垂足为D,AE⊥PC,垂足为E,∠ABC=90°.(i)证明:平面ADE⊥平面PAC;(ii)作出平面ADE与平面ABC的交线l,并证明∠EAC是二面角E-l-C的平面角.(在图中体现作图过程不必写出画法)19.已知:的顶点,,.(1)求AB边上的中线CD所在直线的方程;(2)求的面积.20.已知数列的前项和,满足.(1)若,求数列的通项公式;(2)在满足(1)的条件下,求数列的前项和的表达式;21.已知等差数列满足,,其前项和为.(1)求的通项公式及;(2)令,求数列的前项和,并求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
以的中点为原点,建立如图所示的平面直角坐标系,设M的坐标为,,求出点的坐标,得到,根据正弦函数的图象和性质即可求出答案.【详解】以的中点O为原点,以为x轴,建立如图所示的平面直角坐标系,则外接圆的方程为,设M的坐标为,,过点作垂直轴,,,,,,,,,,,,,,,,,,,,,,,其中,,当时,有最大值,最大值为,故选C.【点睛】本题考查了向量的坐标运算和向量的数乘运算和正弦函数的图象和性质,以及直角三角形的问题,考查了学生的分析解决问题的能力,属于难题.2、B【解析】试题分析:由三视图中的正视图可知,由一个面为直角三角形,左视图和俯视图可知其它的面为长方形.综合可判断为三棱柱.考点:由三视图还原几何体.3、B【解析】
通过函数图像可计算出三角函数的周期,从而求得w,再代入一个最低点即可得到答案.【详解】,,又,,,又,,故选B.【点睛】本题主要考查三角函数的图像,通过周期求得w是解决此类问题的关键.4、D【解析】
先求出圆心到直线距离,再加上圆的半径,就是圆上一点到直线的最大距离.【详解】圆心(2,1)到直线的距离是,所以圆上一点到直线的最大距离为,故选D.【点睛】本题主要考查圆上一点到直线距离最值的求法,以及点到直线的距离公式.5、A【解析】
直接利用扇形的面积公式求解.【详解】扇形的弧长l=8,半径r=2,由扇形的面积公式可知,该扇形的面积S=1故选A【点睛】本题主要考查扇形面积的计算,意在考查学生对该知识的理解掌握水平和分析推理能力.6、D【解析】
利用赋值法逐项排除可得出结果.【详解】对于A选项,,不合乎题意;对于B选项,,不合乎题意;对于C选项,,不合乎题意;对于D选项,当为奇数时,,此时,当为偶数时,,此时,合乎题意.故选:D.【点睛】本题考查利用观察法求数列的通项,考查推理能力,属于中等题.7、B【解析】
根据直线方程分离参数,再由直线过定点的条件可得方程组,解方程组进而可得m的值.【详解】恒过定点,恒过定点,由解得即直线恒过定点.【点睛】本题考查含有参数的直线过定点问题,过定点是解题关键.8、C【解析】分析:根据不等式性质逐一分析即可.详解:A.若ac<bc,则a<b,因为不知道c的符号,故错误;B.若a2<可令a=-1,b=-2,则结论错误;D.若a<b,则点睛:考查不等式的基本性质,做此类题型最好的方法就是举例子注意排除即可.属于基础题.9、A【解析】
先求出,再根据得到解方程组即得解.【详解】由题意得,又因为,所以,由题意得,所以解得所以,故选A.【点睛】本题主要考查平面向量的运算法则,意在考查学生对这些知识的理解掌握水平,属于基础题.10、C【解析】
将转化为,利用向量数量积运算化简,然后利用基本不等式求得表达式的最小值.【详解】画出图像如下图所示,,等号在,即为的中点时成立.故选C.【点睛】本小题主要考查平面向量加法运算,考查平面向量的数量积运算,考查利用基本不等式求最值,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】分析:由圆锥的几何特征,现用一半径为,面积为的扇形铁皮制作一个无盖的圆锥形容器,则圆锥的底面周长等于扇形的弧长,圆锥的母线长等于扇形的半径,由此计算出圆锥的高,代入圆锥体积公式,即可求出答案.解析:设铁皮扇形的半径和弧长分别为R、l,圆锥形容器的高和底面半径分别为h、r,则由题意得R=10,由,得,由得.由可得.该容器的容积为.故答案为.点睛:涉及弧长和扇形面积的计算时,可用的公式有角度表示和弧度表示两种,其中弧度表示的公式结构简单,易记好用,在使用前,应将圆心角用弧度表示.12、【解析】试题分析:化简得:,所以,解得或(舍去),又,所以.【考点】二倍角公式及三角函数求值【名师点睛】已知三角函数值求角,基本思路是通过化简,得到角的某种三角函数值,结合角的范围求解.本题难度不大,能较好地考查考生的逻辑推理能力、基本计算能力等.13、【解析】
通过可求得x的取值范围,接着利用反正弦函数的定义可得的取值范围.【详解】,,即.由反正弦函数的定义可得,即的取值范围为.故答案为:.【点睛】本题主要考查余弦函数的定义域和值域,反正弦函数的定义,属于基础题.14、.【解析】
由题意得出,可得出数列为等比数列,确定出该数列的首项和公比,可求出数列的通项公式,进而求出数列的通项公式.【详解】设,整理得,对比可得,,即,且,所以,数列是以为首项,以为公比的等比数列,,因此,,故答案为.【点睛】本题考查数列通项的求解,解题时要结合递推式的结构选择合适的方法来求解,同时要注意等差数列和等比数列定义的应用,考查分析问题和解决问题的能力,属于中等题.15、【解析】
运用基本不等式求出结果.【详解】因为,所以,,所以,所以最小值为【点睛】本题考查了基本不等式的运用求最小值,需要满足一正二定三相等.16、【解析】
根据分层抽样的定义建立比例关系,即可得到答案。【详解】设抽取的样本中老年教师的人数为,学校所有的中老年教师人数为270人由分层抽样的定义可知:,解得:故答案为【点睛】本题考查分层抽样,考查学生的计算能力,属于基础题。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)万元【解析】
(1)由题意计算,求出回归系数,写出线性回归方程;(2)利用回归方程计算时的值即可.【详解】(1)由题意,又,所以所以所以线性回归方程为;(2)由(1)知,当时,预测某家庭年收入为120万元时,某年购买理财产品的支出为万元.【点睛】本题考查了线性回归方程的求法与应用问题,是基础题.18、(1)BC⊥AB或BC⊥AC或BC⊥PB或BC⊥PC.(2)(i)见证明;(ii)见解析【解析】
(1)根据已知填BC⊥AB或BC⊥AC或BC⊥PB或BC⊥PC均可;(2)(i)先证明PC⊥平面ADE,再证明平面ADE⊥平面PAC;(ii)在平面PBC中,记DE∩BC,=F,连结AF,则AF为所求的l.再证明∠EAC是二面角E-l-C的平面角.【详解】(1)BC⊥AB或BC⊥AC或BC⊥PB或BC⊥PC.(2)(i)在三棱锥P-ABC中,BC⊥AB,BC⊥PA,BC∩PA=A,所以BC⊥平面PAB,又AD⊂平面PAB,所以BC⊥AD,又AD⊥PB,PB∩BC=B,所以AD⊥平面PBC.又PC⊂平面PBC,所以PC⊥AD,因为AE⊥PC且AE∩AD=A,所以PC⊥平面ADE,因为PC⊂平面PAC,所以平面ADE⊥平面PAC.(ii)在平面PBC中,记DE∩BC=F,连结AF,则AF为所求的l.因为PC⊥平面AED,l⊂平面AED,所以PC⊥l,因为PA⊥平面ABC,l⊂平面ABC,所以PA⊥l,又PA∩PC=P,所以l⊥平面PAC.又AE⊂平面PAC且AC⊂平面PAC,所以AE⊥l,AC⊥l.所以∠EAC就是二面角E-l-C的一个平面角.【点睛】本题主要考查空间线面位置关系,面面角的作图及证明,属于中档题.19、(1);(2)11.【解析】
(1)直接利用已知条件求出AB边上的中点,即可求直线的方程.(2)利用所求出的直线方程利用分割法求出三角形的面积,或者求出及直线AB的方程,可得点C到直线AB的距离,求出三角形的面积.【详解】(1)∵线段AB的中点D的坐标为,所以,由两点式方程可得,AB边上的中线CD所在直线的方程为,即.(2)法1:因为,点A到直线CD的距离是,所以的面积是.法2:因为,由两点式得直线AB的方程为:,点C到直线AB的距离是,所以的面积是.【点睛】本题考查直线方程求法与点到直线距离公式应用,属于基础题.20、(1);(2).【解析】
(1)已知求,利用即可求出;(2)根据数列通项公式特征,采取分组求和法和错位相减法求出【详解】(1)因为,所以,当时,,所以;当时,,即,,因为,所以,,即,当时,也符合
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人工呼吸设备产品供应链分析
- 卫生制剂零售或批发服务行业市场调研分析报告
- 个人背景调查行业相关项目经营管理报告
- 医用矿泉水产品供应链分析
- 工商业公司的商业管理辅助行业营销策略方案
- 为会议中心提供餐饮供应服务行业经营分析报告
- 家用杀真菌剂产品供应链分析
- 为企业提供商业咨询行业营销策略方案
- 电修部门的卓越之旅-半年成绩与未来展望
- 电动起重机项目营销计划书
- 抚仙湖流域水污染综合防治
- 05S502阀门井图集
- 金蝶kis使用的新会计准则资产负债表(带公式)
- 煎饼公司创业的策划方案书
- 放射科面试试题【精选文档】
- 土地权属纠纷处理决议(草案)
- 设备利用率统计表
- 工期日历天计算器
- 仪表交工资料
- 走遍德国 A1(课堂PPT)
- 380V变频器招标技术文件2010
评论
0/150
提交评论