版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省南昌一中2025届数学高一下期末考试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x﹣2)2+y2=2上,则△ABP面积的最小值为()A.1 B.2 C. D.2.如图,长方体的体积为,E为棱上的点,且,三棱锥E-BCD的体积为,则=()A. B. C. D.3.若,则下列不等式中不正确的是().A. B. C. D.4.如果角的终边经过点,那么的值是()A. B. C. D.5.已知集合,,则()A. B. C. D.6.在平行四边形中,为一条对角线,,,则=()A.(2,4) B.(3,5) C.(1,1) D.(-1,-1)7.以两点A(-3,-1)和B(5,5)为直径端点的圆的标准方程是()A.(x-1)2+(y-2)2=10 B.(x-1)2+(y-2)2=100C.(x-1)2+(y-2)2=5 D.(x-1)2+(y-2)2=258.一个几何体的三视图如图,则该几何体的体积为()A. B. C.10 D.9.已知函数,若方程在上有且只有三个实数根,则实数的取值范围为()A. B. C. D.10.下列说法正确的是()A.函数的最小值为 B.函数的最小值为C.函数的最小值为 D.函数的最小值为二、填空题:本大题共6小题,每小题5分,共30分。11.已知四棱锥的底面是边长为的正方形,侧棱长均为.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________.12.已知、、分别是的边、、的中点,为的外心,且,给出下列等式:①;②;③;④其中正确的等式是_________(填写所有正确等式的编号).13.设O点在内部,且有,则的面积与的面积的比为.14.________15.已知不等式x2-x-a>0的解集为x|x>3或16.已知,,若,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)解关于的不等式;(2)若,令,求函数的最小值.18.已知数列前n项和,点在函数的图象上.(1)求的通项公式;(2)设数列的前n项和为,不等式对任意的正整数恒成立,求实数a的取值范围.19.求经过直线的交点,且满足下列条件的直线方程:(1)与直线平行;(2)与直线垂直.20.如图,已知矩形中,,,M是以为直径的半圆周上的任意一点(与C,D均不重合),且平面平面.(1)求证:平面平面;(2)当四棱锥的体积最大时,求与所成的角21.已知数列的前项和为,.(1)求数列的通项公式;(2)设,求数列的前项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
求得圆心到直线的距离,减去圆的半径,求得△ABP面积的最小时,三角形的高,由此求得△ABP面积的最小值.【详解】依题意设,故.圆的圆心为,半径为,所以圆上的点到直线的距离的最小值为(其中为圆心到直线的距离),所以△ABP面积的最小值为.故选:B【点睛】本小题主要考查圆上的点到直线的距离的最小值的求法,考查三角形面积的最值的求法,属于基础题.2、D【解析】
分别求出长方体和三棱锥E-BCD的体积,即可求出答案.【详解】由题意,,,则.故选D.【点睛】本题考查了长方体与三棱锥的体积的计算,考查了学生的计算能力,属于基础题.3、D【解析】
先判断出的大小关系,然后根据不等式的性质以及基本不等式逐项判断.【详解】由,得,,,故D不正确,C正确;,,,故A正确;,,,取等号时,故B正确,故选D.【点睛】本题考查利用不等式性质以及基本不等式判断不等式是否成立,难度一般.注意使用基本不等式计算最值时,取等号的条件一定要记得添加.4、D【解析】
根据任意角的三角函数定义直接求解.【详解】因为角的终边经过点,所以,故选:D.【点睛】本题考查任意角的三角函数求值,属于基础题.5、D【解析】依题意,故.6、C【解析】试题分析:,故选C.考点:平面向量的线性运算.7、D【解析】分析:由条件求出圆心坐标和半径的值,从而得出结论.详解:圆心坐标为(1,2),半径r==5,故所求圆的标准方程为(x-1)2+(y-2)2=25.故选D.点睛:本题主要考查求圆的标准方程的方法,求出圆心坐标和半径的值,是解题的关键,属于基础题.8、B【解析】
由三视图可知该几何体为正四棱台,下底面边长为4,上底面边长为2,高为1.再由正四棱台体积公式求解.【详解】由三视图可知该几何体为正四棱台,下底面边长为4,上底面边长为2,高为1,所以,,∴该正四棱台的体积.故选:B.【点睛】本题考查由三视图求正四棱台的体积,关键是由三视图判断出原几何体的形状,属于基础题.9、A【解析】
先辅助角公式化简,先求解方程的根的表达式,再根据在上有且只有三个实数根列出对应的不等式求解即可.【详解】.又在上有且只有三个实数根,故,解得或,即或,.设直线与在上从做到右的第三个交点为,第四个交点为.则,.故.故实数的取值范围为.故选:A【点睛】本题主要考查了根据三角函数的根求解参数范围的问题,需要根据题意先求解根的解析式,进而根据区间中的零点个数列出区间端点满足的关系式求解即可.属于中档题.10、C【解析】
A.时无最小值;
B.令,由,可得,即,令,利用单调性研究其最值;
C.令,令,利用单调性研究其最值;
D.当时,,无最小值.【详解】解:A.时无最小值,故A错误;
B.令,由,可得,即,令,则其在上单调递减,故,故B错误;C.令,令,则其在上单调递减,上单调递增,故,故C正确;
D.当时,,无最小值,故D不正确.
故选:C.【点睛】本题考查了基本不等式的性质、利用导数研究函数的单调性极值与最值、三角函数的单调性,考查了推理能力与计算能力,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】
根据棱锥的结构特点,确定所求的圆柱的高和底面半径.【详解】由题意四棱锥的底面是边长为的正方形,侧棱长均为,借助勾股定理,可知四棱锥的高为,.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,圆柱的底面半径为,一个底面的圆心为四棱锥底面的中心,故圆柱的高为,故圆柱的体积为.【点睛】本题主要考查了圆柱与四棱锥的组合,考查了空间想象力,属于基础题.12、①②④.【解析】
根据向量的中点性质与向量的加法运算,可判断①②③.【详解】、、分别是的边、、的中点,为的外心,且,设三条中线交点为G,如下图所示:对于①,由三角形中线性质及向量加法运算可知,所以①正确;对于②,,所以②正确;对于③,,所以③错误;对于,由外心性质可知,所以故正确.综上可知,正确的为①②④.故答案为:①②④.【点睛】本题考查了向量的线性运算,三角形外心的性质及应用,属于基础题.13、3【解析】
分别取AC、BC的中点D、E,
,
,即,
是DE的一个三等分点,
,
故答案为:3.14、【解析】
根据极限的运算法则,合理化简、运算,即可求解.【详解】由极限的运算,可得.故答案为:【点睛】本题主要考查了极限的运算法则的应用,其中解答熟记极限的运算法则,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.15、6【解析】
由题意可知-2,3为方程x2【详解】由题意可知-2,3为方程x2-x-a=0的两根,则-2×3=-a,即故答案为:6【点睛】本题主要考查一元二次不等式的解,意在考查学生对该知识的理解掌握水平,属于基础题.16、【解析】
首先令,分别把解出来,再利用整体换元的思想即可解决.【详解】令所以令,所以所以【点睛】本题主要考查了整体换元的思想以及对数之间的运算和公式法解一元二次方程.整体换元的思想是高中的一个重点,也是高考常考的内容需重点掌握.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)答案不唯一,具体见解析(2)【解析】
(1)讨论的范围,分情况得的三个答案.(2)时,写出表达式,利用均值不等式得到最小值.【详解】(1)①当时,不等式的解集为,②当时,不等式的解集为,③当时,不等式的解集为(2)若时,令(当且仅当,即时取等号).故函数的最小值为.【点睛】本题考查了解不等式,均值不等式,函数的最小值,意在考查学生的综合应用能力.18、(1);(2).【解析】试题分析:(1)将点的坐标代入函数的方程得到.利用,可求得数列的通项公式为.(2)利用裂项求和法求得.为递增的数列,当时有最小值为,所以,解得.试题解析:(1)点在函数的图象上,.①当时,,②①-②得.当时,,符合上式..(2)由(1)得,.,数列单调递增,中的最小项为.要使不等式对任意正整数恒成立,只要,即.解得,即实数的取值范围为.点睛:本题主要考查函数与数列,考查已知数列前项和,求数列通项的方法,即用公式.要注意验证当时等号是否成立.考查了裂项求和法,当数列通项是分数的形式,并且分母是两个等差数列的乘积的时候,可考虑用裂项求和法求和.还考查了数列的单调性和恒成立问题的解法.19、(1);(2).【解析】
(1)先求出,再设所求的直线为,代入求出后可得所求的直线方程.(2)设所求的直线为,代入求出后可得所求的直线方程.【详解】(1)由题意知:联立方程组,解得交点,因为所求直线与直线平行,故设所求直线的方程为,代入,解得,即所求直线方程为(2)设与垂直的直线方程为因为过点,代入得,故所求直线方程为【点睛】本题考查直线方程的求法,注意根据平行或垂直关系合理假设直线方程,本题属于容易题.20、(1)证明见解析(2)【解析】
(1)证明,得到平面,得到答案.(2)过点M作于点E,当M为半圆弧的中点时,四棱锥的体积最大,作于F,连接,与所成的角即与所成的角,计算得到答案.【详解】(1)为直径,,已知平面平面,.平面,所以,又,平面,又平面,∴平面平面.(2)过点M作于点E,∵平面平面,平面,即为四棱锥的高,又底面面积为定值.所以当M为半圆弧的中点时,四棱锥的体积最大.作于F,连接,,与所成的角即与所成的角.在直角中,,,所以.,故与所成的角为.【点睛】本题考查了面面垂直,体积的最值,异面直线夹角,意在考查学生的空间想象能力和计算能力.21、(1);(2).【解析】
(1)由递推公式,再递推一步,得,两式相减化简得,可以判断数列是等差数列,进而可以求出等差数列的通项公式;(2)根据(1)和对数的运算性质,用裂项相消
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人工呼吸设备产品供应链分析
- 卫生制剂零售或批发服务行业市场调研分析报告
- 个人背景调查行业相关项目经营管理报告
- 医用矿泉水产品供应链分析
- 工商业公司的商业管理辅助行业营销策略方案
- 为会议中心提供餐饮供应服务行业经营分析报告
- 家用杀真菌剂产品供应链分析
- 为企业提供商业咨询行业营销策略方案
- 电修部门的卓越之旅-半年成绩与未来展望
- 电动起重机项目营销计划书
- 电子秤内校作业指导书
- 医院感染管理组织架构图
- (完整版)国家会计领军人才题型及经验分享
- 6.2做负责任的人课件(25张PPT)
- 视力以及视力表
- 制式服装生产供货服务方案
- 口腔颌面部医学影像诊断学课件
- 煤矿设备设施清单
- 电气检修基础专项测试卷附答案
- 事故车报价单Excel模板
- 高三(6)主题班会:坚持成就梦想
评论
0/150
提交评论